Cargando…
Integral-valued polynomials over sets of algebraic integers of bounded degree()
Let K be a number field of degree n with ring of integers [Formula: see text]. By means of a criterion of Gilmer for polynomially dense subsets of the ring of integers of a number field, we show that, if [Formula: see text] maps every element of [Formula: see text] of degree n to an algebraic intege...
Autor principal: | Peruginelli, Giulio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750901/ https://www.ncbi.nlm.nih.gov/pubmed/26949270 http://dx.doi.org/10.1016/j.jnt.2013.11.007 |
Ejemplares similares
-
Integer-valued polynomials
por: Cahen, Paul-Jean, et al.
Publicado: (2014) -
Integers, polynomials, and rings: a course in algebra
por: Irving, Ronald S
Publicado: (2004) -
Conference on Commutative rings, integer-valued polynomials and polynomial functions
por: Fontana, Marco, et al.
Publicado: (2014) -
Primary decomposition of the ideal of polynomials whose fixed divisor is divisible by a prime power()
por: Peruginelli, Giulio
Publicado: (2014) -
A bound for the torsion in the $K$-theory of algebraic integers
por: Soulé, C
Publicado: (2002)