Cargando…
Identification of Targets of CUG-BP, Elav-Like Family Member 1 (CELF1) Regulation in Embryonic Heart Muscle
CUG-BP, Elav-like family member 1 (CELF1) is a highly conserved RNA binding protein that regulates pre-mRNA alternative splicing, polyadenylation, mRNA stability, and translation. In the heart, CELF1 is expressed in the myocardium, where its levels are tightly regulated during development. CELF1 lev...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750973/ https://www.ncbi.nlm.nih.gov/pubmed/26866591 http://dx.doi.org/10.1371/journal.pone.0149061 |
Sumario: | CUG-BP, Elav-like family member 1 (CELF1) is a highly conserved RNA binding protein that regulates pre-mRNA alternative splicing, polyadenylation, mRNA stability, and translation. In the heart, CELF1 is expressed in the myocardium, where its levels are tightly regulated during development. CELF1 levels peak in the heart during embryogenesis, and aberrant up-regulation of CELF1 in the adult heart has been implicated in cardiac pathogenesis in myotonic dystrophy type 1, as well as in diabetic cardiomyopathy. Either inhibition of CELF activity or over-expression of CELF1 in heart muscle causes cardiomyopathy in transgenic mice. Nonetheless, many of the cardiac targets of CELF1 regulation remain unknown. In this study, to identify cardiac targets of CELF1 we performed cross-linking immunoprecipitation (CLIP) for CELF1 from embryonic day 8 chicken hearts. We identified a previously unannotated exon in MYH7B as a novel target of CELF1-mediated regulation. We demonstrated that knockdown of CELF1 in primary chicken embryonic cardiomyocytes leads to increased inclusion of this exon and decreased MYH7B levels. We also investigated global changes in the transcriptome of primary embryonic cardiomyocytes following CELF1 knockdown in a published RNA-seq dataset. Pathway and network analyses identified strong associations between CELF1 and regulation of cell cycle and translation. Important regulatory proteins, including both RNA binding proteins and a cardiac transcription factor, were affected by loss of CELF1. Together, these data suggest that CELF1 is a key regulator of cardiomyocyte gene expression. |
---|