Cargando…

Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry

OBJECTIVES: The purpose of this study was to assess the ability of two new calcium silicate-based pulp-capping materials (Biodentine and BioAggregate) to induce healing in a rat pulp injury model and to compare them with mineral trioxide aggregate (MTA). MATERIALS AND METHODS: Eighteen rats were ane...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jia, Song, Young-Sang, Min, Kyung-San, Kim, Sun-Hun, Koh, Jeong-Tae, Lee, Bin-Na, Chang, Hoon-Sang, Hwang, In-Nam, Oh, Won-Mann, Hwang, Yun-Chan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Academy of Conservative Dentistry 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751204/
https://www.ncbi.nlm.nih.gov/pubmed/26877988
http://dx.doi.org/10.5395/rde.2016.41.1.29
Descripción
Sumario:OBJECTIVES: The purpose of this study was to assess the ability of two new calcium silicate-based pulp-capping materials (Biodentine and BioAggregate) to induce healing in a rat pulp injury model and to compare them with mineral trioxide aggregate (MTA). MATERIALS AND METHODS: Eighteen rats were anesthetized, cavities were prepared and the pulp was capped with either of ProRoot MTA, Biodentine, or BioAggregate. The specimens were scanned using a high-resolution micro-computed tomography (micro-CT) system and were prepared and evaluated histologically and immunohistochemically using dentin sialoprotein (DSP). RESULTS: On micro-CT analysis, the ProRoot MTA and Biodentine groups showed significantly thicker hard tissue formation (p < 0.05). On H&E staining, ProRoot MTA showed complete dentin bridge formation with normal pulpal histology. In the Biodentine and BioAggregate groups, a thick, homogeneous hard tissue barrier was observed. The ProRoot MTA specimens showed strong immunopositive reaction for DSP. CONCLUSIONS: Our results suggest that calcium silicate-based pulp-capping materials induce favorable effects on reparative processes during vital pulp therapy and that both Biodentine and BioAggregate could be considered as alternatives to ProRoot MTA.