Cargando…
Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas
The eastern China marginal seas (ECMS) are prominent examples of river-dominated ocean margins, whose most characteristic feature is the existence of isolated mud patches on sandy sediments. Ammonia-oxidizing prokaryotes play a crucial role in the nitrogen cycles of many marine environments, includi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751261/ https://www.ncbi.nlm.nih.gov/pubmed/26904010 http://dx.doi.org/10.3389/fmicb.2016.00137 |
_version_ | 1782415555536355328 |
---|---|
author | Yu, Shaolan Yao, Peng Liu, Jiwen Zhao, Bin Zhang, Guiling Zhao, Meixun Yu, Zhigang Zhang, Xiao-Hua |
author_facet | Yu, Shaolan Yao, Peng Liu, Jiwen Zhao, Bin Zhang, Guiling Zhao, Meixun Yu, Zhigang Zhang, Xiao-Hua |
author_sort | Yu, Shaolan |
collection | PubMed |
description | The eastern China marginal seas (ECMS) are prominent examples of river-dominated ocean margins, whose most characteristic feature is the existence of isolated mud patches on sandy sediments. Ammonia-oxidizing prokaryotes play a crucial role in the nitrogen cycles of many marine environments, including marginal seas. However, few studies have attempted to address the distribution patterns of ammonia-oxidizing prokaryotes in mud deposits of these seas. The horizontal and vertical community composition and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in mud deposits of the South Yellow Sea (SYS) and the East China Sea (ECS) by using amoA clone libraries and quantitative PCR. The diversity of AOB was comparable or higher in the mud zone of SYS and lower in ECS when compared with AOA. Vertically, surface sediments had generally higher diversity of AOA and AOB than middle and bottom layers. Diversity of AOA and AOB showed significant correlation with latitude. Nitrosopumilus and Nitrosospira lineages dominated AOA and AOB communities, respectively. Both AOA and AOB assemblages exhibited greater variations across different sites than those among various depths at one site. The abundance of bacterial amoA was generally higher than that of archaeal amoA, and both of them decreased with depth. Niche differentiation, which was affected by dissolved oxygen, salinity, ammonia, and silicate (SiO [Formula: see text]), was observed between AOA and AOB and among different groups of them. The spatial distribution of AOA and AOB was significantly correlated with δ(15)N(TN) and SiO [Formula: see text] , and nitrate and δ(13)C, respectively. Both archaeal and bacterial amoA abundance correlated strongly with SiO [Formula: see text]. This study improves our understanding of spatial distribution of AOA and AOB in ecosystems featuring oceanic mud deposits. |
format | Online Article Text |
id | pubmed-4751261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-47512612016-02-22 Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas Yu, Shaolan Yao, Peng Liu, Jiwen Zhao, Bin Zhang, Guiling Zhao, Meixun Yu, Zhigang Zhang, Xiao-Hua Front Microbiol Microbiology The eastern China marginal seas (ECMS) are prominent examples of river-dominated ocean margins, whose most characteristic feature is the existence of isolated mud patches on sandy sediments. Ammonia-oxidizing prokaryotes play a crucial role in the nitrogen cycles of many marine environments, including marginal seas. However, few studies have attempted to address the distribution patterns of ammonia-oxidizing prokaryotes in mud deposits of these seas. The horizontal and vertical community composition and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in mud deposits of the South Yellow Sea (SYS) and the East China Sea (ECS) by using amoA clone libraries and quantitative PCR. The diversity of AOB was comparable or higher in the mud zone of SYS and lower in ECS when compared with AOA. Vertically, surface sediments had generally higher diversity of AOA and AOB than middle and bottom layers. Diversity of AOA and AOB showed significant correlation with latitude. Nitrosopumilus and Nitrosospira lineages dominated AOA and AOB communities, respectively. Both AOA and AOB assemblages exhibited greater variations across different sites than those among various depths at one site. The abundance of bacterial amoA was generally higher than that of archaeal amoA, and both of them decreased with depth. Niche differentiation, which was affected by dissolved oxygen, salinity, ammonia, and silicate (SiO [Formula: see text]), was observed between AOA and AOB and among different groups of them. The spatial distribution of AOA and AOB was significantly correlated with δ(15)N(TN) and SiO [Formula: see text] , and nitrate and δ(13)C, respectively. Both archaeal and bacterial amoA abundance correlated strongly with SiO [Formula: see text]. This study improves our understanding of spatial distribution of AOA and AOB in ecosystems featuring oceanic mud deposits. Frontiers Media S.A. 2016-02-12 /pmc/articles/PMC4751261/ /pubmed/26904010 http://dx.doi.org/10.3389/fmicb.2016.00137 Text en Copyright © 2016 Yu, Yao, Liu, Zhao, Zhang, Zhao, Yu and Zhang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Yu, Shaolan Yao, Peng Liu, Jiwen Zhao, Bin Zhang, Guiling Zhao, Meixun Yu, Zhigang Zhang, Xiao-Hua Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas |
title | Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas |
title_full | Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas |
title_fullStr | Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas |
title_full_unstemmed | Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas |
title_short | Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas |
title_sort | diversity, abundance, and niche differentiation of ammonia-oxidizing prokaryotes in mud deposits of the eastern china marginal seas |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751261/ https://www.ncbi.nlm.nih.gov/pubmed/26904010 http://dx.doi.org/10.3389/fmicb.2016.00137 |
work_keys_str_mv | AT yushaolan diversityabundanceandnichedifferentiationofammoniaoxidizingprokaryotesinmuddepositsoftheeasternchinamarginalseas AT yaopeng diversityabundanceandnichedifferentiationofammoniaoxidizingprokaryotesinmuddepositsoftheeasternchinamarginalseas AT liujiwen diversityabundanceandnichedifferentiationofammoniaoxidizingprokaryotesinmuddepositsoftheeasternchinamarginalseas AT zhaobin diversityabundanceandnichedifferentiationofammoniaoxidizingprokaryotesinmuddepositsoftheeasternchinamarginalseas AT zhangguiling diversityabundanceandnichedifferentiationofammoniaoxidizingprokaryotesinmuddepositsoftheeasternchinamarginalseas AT zhaomeixun diversityabundanceandnichedifferentiationofammoniaoxidizingprokaryotesinmuddepositsoftheeasternchinamarginalseas AT yuzhigang diversityabundanceandnichedifferentiationofammoniaoxidizingprokaryotesinmuddepositsoftheeasternchinamarginalseas AT zhangxiaohua diversityabundanceandnichedifferentiationofammoniaoxidizingprokaryotesinmuddepositsoftheeasternchinamarginalseas |