Cargando…
Multiple Imputation for General Missing Data Patterns in the Presence of High-dimensional Data
Multiple imputation (MI) has been widely used for handling missing data in biomedical research. In the presence of high-dimensional data, regularized regression has been used as a natural strategy for building imputation models, but limited research has been conducted for handling general missing da...
Autores principales: | Deng, Yi, Chang, Changgee, Ido, Moges Seyoum, Long, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751511/ https://www.ncbi.nlm.nih.gov/pubmed/26868061 http://dx.doi.org/10.1038/srep21689 |
Ejemplares similares
-
Multiple imputation for analysis of incomplete data in distributed health data networks
por: Chang, Changgee, et al.
Publicado: (2020) -
Efficiency of multiple imputation to test for association in the presence of missing data
por: Croiseau, Pascal, et al.
Publicado: (2007) -
Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
por: Liao, Serena G, et al.
Publicado: (2014) -
Multiple imputation of maritime search and rescue data at multiple missing patterns
por: Wang, Guobo, et al.
Publicado: (2021) -
Multiple imputation of missing data using SAS
por: Berglund, Patricia A, et al.
Publicado: (2014)