Cargando…

On spatial pattern of concentration distribution for Taylor dispersion process

Taylor dispersion is a key concept in many fields. In the present paper, we characterize the pattern of the complete spatial concentration distribution for laminar tube flow; the obtained simple description is shown to represent the nature of Taylor dispersion. Importantly, we find that during the a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Zi, Fu, Xudong, Wang, Guangqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751533/
https://www.ncbi.nlm.nih.gov/pubmed/26867803
http://dx.doi.org/10.1038/srep20556
Descripción
Sumario:Taylor dispersion is a key concept in many fields. In the present paper, we characterize the pattern of the complete spatial concentration distribution for laminar tube flow; the obtained simple description is shown to represent the nature of Taylor dispersion. Importantly, we find that during the approach to the longitudinal normality of the transverse mean concentration at the time scale of R(2)/D (R is the tube radius and D is the molecular diffusivity), the solute concentration becomes uniformly distributed across a family of invariant curved transverse surfaces instead of the flat cross-sections in the traditional view. The family of curved surfaces is analytically determined, and a transformation is devised for the previously obtained analytical solution to discuss the decay of the concentration difference across the curved surfaces. The approach to a uniform concentration across the flat cross-sections to the same degree (~3% by concentration difference percentage), achieved at a time-scale of 100 R(2)/D, is shown to be the natural consequence of the longitudinal separation of the concentration contours on the curved surfaces.