Cargando…

Optical brush: Imaging through permuted probes

The combination of computational techniques and ultrafast imaging have enabled sensing through unconventional settings such as around corners, and through diffusive media. We exploit time of flight (ToF) measurements to enable a flexible interface for imaging through permuted set of fibers. The fibe...

Descripción completa

Detalles Bibliográficos
Autores principales: Heshmat, Barmak, Lee, Ik Hyun, Raskar, Ramesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751542/
https://www.ncbi.nlm.nih.gov/pubmed/26868954
http://dx.doi.org/10.1038/srep20217
Descripción
Sumario:The combination of computational techniques and ultrafast imaging have enabled sensing through unconventional settings such as around corners, and through diffusive media. We exploit time of flight (ToF) measurements to enable a flexible interface for imaging through permuted set of fibers. The fibers are randomly distributed in the scene and are packed on the camera end, thus making a brush-like structure. The scene is illuminated by two off-axis optical pulses. Temporal signatures of fiber tips in the scene are used to localize each fiber. Finally, by combining the position and measured intensity of each fiber, the original input is reconstructed. Unlike conventional fiber bundles with packed set of fibers that are limited by a narrow field of view (FOV), lack of flexibility, and extended coaxial precalibration, the proposed optical brush is flexible and uses off-axis calibration method based on ToF. The enabled brush form can couple to other types of ToF imaging systems. This can impact probe-based applications such as, endoscopy, tomography, and industrial imaging and sensing.