Cargando…
Endoplasmic reticulum and lysosomal Ca(2+) stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts
Mutations in β-glucocerebrosidase (encoded by GBA1) cause Gaucher disease (GD), a lysosomal storage disorder, and increase the risk of developing Parkinson disease (PD). The pathogenetic relationship between the two disorders is unclear. Here, we characterised Ca(2+) release in fibroblasts from type...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751977/ https://www.ncbi.nlm.nih.gov/pubmed/26691915 http://dx.doi.org/10.1016/j.ceca.2015.11.002 |
Sumario: | Mutations in β-glucocerebrosidase (encoded by GBA1) cause Gaucher disease (GD), a lysosomal storage disorder, and increase the risk of developing Parkinson disease (PD). The pathogenetic relationship between the two disorders is unclear. Here, we characterised Ca(2+) release in fibroblasts from type I GD and PD patients together with age-matched, asymptomatic carriers, all with the common N370S mutation in β-glucocerebrosidase. We show that endoplasmic reticulum (ER) Ca(2+) release was potentiated in GD and PD patient fibroblasts but not in cells from asymptomatic carriers. ER Ca(2+) signalling was also potentiated in fibroblasts from aged healthy subjects relative to younger individuals but not further increased in aged PD patient cells. Chemical or molecular inhibition of β-glucocerebrosidase in fibroblasts and a neuronal cell line did not affect ER Ca(2+) signalling suggesting defects are independent of enzymatic activity loss. Conversely, lysosomal Ca(2+) store content was reduced in PD fibroblasts and associated with age-dependent alterations in lysosomal morphology. Accelerated remodelling of Ca(2+) stores by pathogenic GBA1 mutations may therefore feature in PD. |
---|