Cargando…
A Signal Processing Approach for Detection of Hemodynamic Instability before Decompensation
Advanced hemodynamic monitoring is a critical component of treatment in clinical situations where aggressive yet guided hemodynamic interventions are required in order to stabilize the patient and optimize outcomes. While there are many tools at a physician’s disposal to monitor patients in a hospit...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752295/ https://www.ncbi.nlm.nih.gov/pubmed/26871715 http://dx.doi.org/10.1371/journal.pone.0148544 |
Sumario: | Advanced hemodynamic monitoring is a critical component of treatment in clinical situations where aggressive yet guided hemodynamic interventions are required in order to stabilize the patient and optimize outcomes. While there are many tools at a physician’s disposal to monitor patients in a hospital setting, the reality is that none of these tools allow hi-fidelity assessment or continuous monitoring towards early detection of hemodynamic instability. We present an advanced automated analytical system which would act as a continuous monitoring and early warning mechanism that can indicate pending decompensation before traditional metrics can identify any clinical abnormality. This system computes novel features or bio-markers from both heart rate variability (HRV) as well as the morphology of the electrocardiogram (ECG). To compare their effectiveness, these features are compared with the standard HRV based bio-markers which are commonly used for hemodynamic assessment. This study utilized a unique database containing ECG waveforms from healthy volunteer subjects who underwent simulated hypovolemia under controlled experimental settings. A support vector machine was utilized to develop a model which predicts the stability or instability of the subjects. Results showed that the proposed novel set of features outperforms the traditional HRV features in predicting hemodynamic instability. |
---|