Cargando…
Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms
Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen res...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752510/ https://www.ncbi.nlm.nih.gov/pubmed/26872267 http://dx.doi.org/10.1371/journal.pone.0149096 |
_version_ | 1782415739147255808 |
---|---|
author | Villahermosa, Desirée Corzo, Alfonso Garcia-Robledo, Emilio González, Juan M. Papaspyrou, Sokratis |
author_facet | Villahermosa, Desirée Corzo, Alfonso Garcia-Robledo, Emilio González, Juan M. Papaspyrou, Sokratis |
author_sort | Villahermosa, Desirée |
collection | PubMed |
description | Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm(-3) h(-1)) and oxygen consumption rates (0.01 μmol cm(-3) h(-1)). The anoxic lower layer showed high sulfide production (2.7 μmol cm(-3) h(-1)). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm(-3) h(-1) depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic relationship. |
format | Online Article Text |
id | pubmed-4752510 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47525102016-02-26 Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms Villahermosa, Desirée Corzo, Alfonso Garcia-Robledo, Emilio González, Juan M. Papaspyrou, Sokratis PLoS One Research Article Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm(-3) h(-1)) and oxygen consumption rates (0.01 μmol cm(-3) h(-1)). The anoxic lower layer showed high sulfide production (2.7 μmol cm(-3) h(-1)). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm(-3) h(-1) depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic relationship. Public Library of Science 2016-02-12 /pmc/articles/PMC4752510/ /pubmed/26872267 http://dx.doi.org/10.1371/journal.pone.0149096 Text en © 2016 Villahermosa et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Villahermosa, Desirée Corzo, Alfonso Garcia-Robledo, Emilio González, Juan M. Papaspyrou, Sokratis Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms |
title | Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms |
title_full | Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms |
title_fullStr | Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms |
title_full_unstemmed | Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms |
title_short | Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms |
title_sort | kinetics of indigenous nitrate reducing sulfide oxidizing activity in microaerophilic wastewater biofilms |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752510/ https://www.ncbi.nlm.nih.gov/pubmed/26872267 http://dx.doi.org/10.1371/journal.pone.0149096 |
work_keys_str_mv | AT villahermosadesiree kineticsofindigenousnitratereducingsulfideoxidizingactivityinmicroaerophilicwastewaterbiofilms AT corzoalfonso kineticsofindigenousnitratereducingsulfideoxidizingactivityinmicroaerophilicwastewaterbiofilms AT garciarobledoemilio kineticsofindigenousnitratereducingsulfideoxidizingactivityinmicroaerophilicwastewaterbiofilms AT gonzalezjuanm kineticsofindigenousnitratereducingsulfideoxidizingactivityinmicroaerophilicwastewaterbiofilms AT papaspyrousokratis kineticsofindigenousnitratereducingsulfideoxidizingactivityinmicroaerophilicwastewaterbiofilms |