Cargando…
A novel efficient β-glucanase from a paddy soil microbial metagenome with versatile activities
BACKGROUND: Cellulose, an abundant and renewable polysaccharides, constitutes the largest resource for bioconversion of biofuels. Plant polysaccharides hydrolysis is catalyzed by cellulases, which include endoglucanases, exoglucanases, and β-glucosidases. Converting cellulose and hemicellulose to sh...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752780/ https://www.ncbi.nlm.nih.gov/pubmed/26877766 http://dx.doi.org/10.1186/s13068-016-0449-6 |
Sumario: | BACKGROUND: Cellulose, an abundant and renewable polysaccharides, constitutes the largest resource for bioconversion of biofuels. Plant polysaccharides hydrolysis is catalyzed by cellulases, which include endoglucanases, exoglucanases, and β-glucosidases. Converting cellulose and hemicellulose to short chains of oligosaccharides by endo-/exoglucanases is the key step for biofuel transformation. Intriguingly, β-glucanases with transglycosylation activity not only can relieve product inhibition of glucan hydrolysis but also has potential application as biocatalysts for functional materials. RESULTS: Here, a metagenomic fosmid library was constructed from a paddy soil for cellulase screening. One purified clone showing carboxymethylcellulase activity was isolated, and the complete β-glucanase gene (umcel9y-1) was cloned and overexpressed in Escherichia coli. Phylogenetic analysis indicated that β-glucanase Umcel9y-1 belonged to the theme C of glycoside hydrolase family 9. Amino acids sequence showed 58.4 % similarity between Umcel9y-1 and its closest characterized reference, cellulase Cel01. Biological characterization showed that Umcel9y-1 was an efficient endoglucanase and also exhibited high activities of exoglucanase and transglycosylation. The transglycosylation products of Umcel9y-1 including sophorose, laminaribiose, and gentiobiose, and transglycosylation was detected under all activated conditions. The order of catalytic efficiency for polysaccharides, cellooligosaccharides, and aryl-β-glycosides was p-nitrophenol-D-cellobioside, barley glucan, cellopentaose, cellotetraose, cellotriose, hydroxyethylcellulose, cellohexose, laminarin, and carboxymethylcellulose, respectively. The barley glucan was the optimal polysaccharides for Umcel9y-1 with K(m) and K(cat)/K(m) values of 13.700 mM and 239.152 s(−1) mM(−1), respectively. CONCLUSION: Biological characterizations of recombinant Umcel9y-1 showed that the versatile β-glucanase had efficient endoglucanase activity to barley glucan and also exhibited high activities of exoglucanase and transglycosylation. The optimum conditions of recombinant Umcel9y-1 was pH 6.5–7.0 at 37 °C with predominant halotolerance and high-thermal stability. These results indicate that the novel metagenomic-derived β-glucanase may be a potent candidate for industrial applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-016-0449-6) contains supplementary material, which is available to authorized users. |
---|