Cargando…

The recombinant pea defensin Drr230a is active against impacting soybean and cotton pathogenic fungi from the genera Fusarium, Colletotrichum and Phakopsora

Plant defensins are antifungal peptides produced by the innate immune system plants developed to circumvent fungal infection. The defensin Drr230a, originally isolated from pea, has been previously shown to be active against various entomopathogenic and phytopathogenic fungi. In the present study, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Lacerda, Ariane Ferreira, Del Sarto, Rafael Perseghini, Silva, Marilia Santos, de Vasconcelos, Erico Augusto Rosas, Coelho, Roberta Ramos, dos Santos, Vanessa Olinto, Godoy, Claudia Vieira, Seixas, Claudine Dinali Santos, da Silva, Maria Cristina Mattar, Grossi-de-Sa, Maria Fatima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752952/
https://www.ncbi.nlm.nih.gov/pubmed/28330129
http://dx.doi.org/10.1007/s13205-015-0320-7
Descripción
Sumario:Plant defensins are antifungal peptides produced by the innate immune system plants developed to circumvent fungal infection. The defensin Drr230a, originally isolated from pea, has been previously shown to be active against various entomopathogenic and phytopathogenic fungi. In the present study, the activity of a yeast-expressed recombinant Drr230a protein (rDrr230a) was tested against impacting soybean and cotton fungi. First, the gene was subcloned into the yeast expression vector pPICZαA and expressed in Pichia pastoris. Resulting rDrr230a exhibited in vitro activity against fungal growth and spore germination of Fusarium tucumaniae, which causes soybean sudden death syndrome, and against Colletotrichum gossypii var. cephalosporioides, which causes cotton ramulosis. The rDrr230a IC(50) corresponding to inhibition of fungal growth of F. tucumaniae and C. gossypii var. cephalosporioides was 7.67 and 0.84 µM, respectively, demonstrating moderate activity against F. tucumaniae and high potency against C. gossypii var. cephalosporioides. Additionally, rDrr230a at 25 ng/µl (3.83 µM) resulted in 100 % inhibition of spore germination of both fungi, demonstrating that rDrr230a affects fungal development since spore germination. Moreover, rDrr230a at 3 µg/µl (460.12 µM) inhibited 100 % of in vitro spore germination of the obligatory biotrophic fungus Phakopsora pachyrhizi, which causes Asian soybean rust. Interestingly, rDrr230a substantially decreased the severity of Asian rust, as demonstrated by in planta assay. To our knowledge, this is the first report of a plant defensin active against an obligatory biotrophic phytopathogenic fungus. Results revealed the potential of rDrr230a as a candidate to be used in plant genetic engineering to control relevant cotton and soybean fungal diseases.