Cargando…
Drug-Drug Interaction Extraction via Convolutional Neural Networks
Drug-drug interaction (DDI) extraction as a typical relation extraction task in natural language processing (NLP) has always attracted great attention. Most state-of-the-art DDI extraction systems are based on support vector machines (SVM) with a large number of manually defined features. Recently,...
Autores principales: | Liu, Shengyu, Tang, Buzhou, Chen, Qingcai, Wang, Xiaolong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752975/ https://www.ncbi.nlm.nih.gov/pubmed/26941831 http://dx.doi.org/10.1155/2016/6918381 |
Ejemplares similares
-
Chemical-induced disease extraction via recurrent piecewise convolutional neural networks
por: Li, Haodi, et al.
Publicado: (2018) -
Feature Engineering for Drug Name Recognition in Biomedical Texts: Feature Conjunction and Feature Selection
por: Liu, Shengyu, et al.
Publicado: (2015) -
Document-level medical relation extraction via edge-oriented graph neural network based on document structure and external knowledge
por: Li, Tao, et al.
Publicado: (2021) -
Entity recognition from clinical texts via recurrent neural network
por: Liu, Zengjian, et al.
Publicado: (2017) -
Exploring convolutional neural networks for drug–drug interaction extraction
por: Suárez-Paniagua, Víctor, et al.
Publicado: (2017)