Cargando…

Microbially assisted recording of the Earth's magnetic field in sediment

Sediments continuously record variations of the Earth's magnetic field and thus provide an important archive for studying the geodynamo. The recording process occurs as magnetic grains partially align with the geomagnetic field during and after sediment deposition, generating a depositional rem...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xiangyu, Egli, Ramon, Gilder, Stuart A., Müller, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753249/
https://www.ncbi.nlm.nih.gov/pubmed/26864428
http://dx.doi.org/10.1038/ncomms10673
Descripción
Sumario:Sediments continuously record variations of the Earth's magnetic field and thus provide an important archive for studying the geodynamo. The recording process occurs as magnetic grains partially align with the geomagnetic field during and after sediment deposition, generating a depositional remanent magnetization (DRM) or post-DRM (PDRM). (P)DRM acquisition mechanisms have been investigated for over 50 years, yet many aspects remain unclear. A key issue concerns the controversial role of bioturbation, that is, the mechanical disturbance of sediment by benthic organisms, during PDRM acquisition. A recent theory on bioturbation-driven PDRM appears to solve many inconsistencies between laboratory experiments and palaeomagnetic records, yet it lacks experimental proof. Here we fill this gap by documenting the important role of bioturbation-induced rotational diffusion for (P)DRM acquisition, including the control exerted on the recorded inclination and intensity, as determined by the equilibrium between aligning and perturbing torques acting on magnetic particles.