Cargando…

Circulating Long Noncoding RNA UCA1 as a Novel Biomarker of Acute Myocardial Infarction

Acute myocardial infarction (AMI) is the most serious cardiovascular disease with high morbidity and mortality. Recent studies have showed that long noncoding RNAs (lnc RNA) play important roles in pathophysiology of cardiovascular diseases, but the investigations are still in their infancy. An lnc...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Youyou, Zhang, Bin, Liu, Ning, Qi, Chao, Xiao, Yanlong, Tian, Xin, Li, Tianyi, Liu, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753318/
https://www.ncbi.nlm.nih.gov/pubmed/26949706
http://dx.doi.org/10.1155/2016/8079372
Descripción
Sumario:Acute myocardial infarction (AMI) is the most serious cardiovascular disease with high morbidity and mortality. Recent studies have showed that long noncoding RNAs (lnc RNA) play important roles in pathophysiology of cardiovascular diseases, but the investigations are still in their infancy. An lnc RNA named urothelial carcinoma-associated 1 (UCA1) is found in tumors such as bladder cancers and lung cancer. And the UCA1 could be as a predictive biomarker for bladder cancer in urine samples or lung cancer in plasma, respectively. In normal states, UCA1 is specifically expressed in heart of adult, indicating that UCA1 might be as a biomarker for heart diseases such as AMI. To test the speculation, we detect the level of UCA1 in plasma of AMI patients and health control using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In addition, we also test the level of miR-1 as it is reported to regulate the expression of UCA1. The results show that the level of plasma UCA1 is decreased at the early state of AMI patients and increased at day 3 after AMI. In addition, the UCA1 alteration is inversely associated with the expression of miR-1. These findings indicate that the circulating UCA1 could be used as a promising novel biomarker for the diagnosis and/or prognosis of AMI.