Cargando…

Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images

Deep Cervical Flexor (DCF) muscles are important in monitoring and controlling neck pain. While ultrasonographic analysis is useful in this area, it has intrinsic subjectivity problem. In this paper, we propose automatic DCF extractor/analyzer software based on computer vision. One of the major diff...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Kwang Baek, Song, Doo Heon, Park, Hyun Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753340/
https://www.ncbi.nlm.nih.gov/pubmed/26949411
http://dx.doi.org/10.1155/2016/5892051
Descripción
Sumario:Deep Cervical Flexor (DCF) muscles are important in monitoring and controlling neck pain. While ultrasonographic analysis is useful in this area, it has intrinsic subjectivity problem. In this paper, we propose automatic DCF extractor/analyzer software based on computer vision. One of the major difficulties in developing such an automatic analyzer is to detect important organs and their boundaries under very low brightness contrast environment. Our fuzzy sigma binarization process is one of the answers for that problem. Another difficulty is to compensate information loss that happened during such image processing procedures. Many morphologically motivated image processing algorithms are applied for that purpose. The proposed method is verified as successful in extracting DCFs and measuring thicknesses in experiment using two hundred 800 × 600 DICOM ultrasonography images with 98.5% extraction rate. Also, the thickness of DCFs automatically measured by this software has small difference (less than 0.3 cm) for 89.8% of extracted DCFs.