Cargando…
Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images
Deep Cervical Flexor (DCF) muscles are important in monitoring and controlling neck pain. While ultrasonographic analysis is useful in this area, it has intrinsic subjectivity problem. In this paper, we propose automatic DCF extractor/analyzer software based on computer vision. One of the major diff...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753340/ https://www.ncbi.nlm.nih.gov/pubmed/26949411 http://dx.doi.org/10.1155/2016/5892051 |
_version_ | 1782415846957645824 |
---|---|
author | Kim, Kwang Baek Song, Doo Heon Park, Hyun Jun |
author_facet | Kim, Kwang Baek Song, Doo Heon Park, Hyun Jun |
author_sort | Kim, Kwang Baek |
collection | PubMed |
description | Deep Cervical Flexor (DCF) muscles are important in monitoring and controlling neck pain. While ultrasonographic analysis is useful in this area, it has intrinsic subjectivity problem. In this paper, we propose automatic DCF extractor/analyzer software based on computer vision. One of the major difficulties in developing such an automatic analyzer is to detect important organs and their boundaries under very low brightness contrast environment. Our fuzzy sigma binarization process is one of the answers for that problem. Another difficulty is to compensate information loss that happened during such image processing procedures. Many morphologically motivated image processing algorithms are applied for that purpose. The proposed method is verified as successful in extracting DCFs and measuring thicknesses in experiment using two hundred 800 × 600 DICOM ultrasonography images with 98.5% extraction rate. Also, the thickness of DCFs automatically measured by this software has small difference (less than 0.3 cm) for 89.8% of extracted DCFs. |
format | Online Article Text |
id | pubmed-4753340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-47533402016-03-06 Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images Kim, Kwang Baek Song, Doo Heon Park, Hyun Jun Comput Math Methods Med Research Article Deep Cervical Flexor (DCF) muscles are important in monitoring and controlling neck pain. While ultrasonographic analysis is useful in this area, it has intrinsic subjectivity problem. In this paper, we propose automatic DCF extractor/analyzer software based on computer vision. One of the major difficulties in developing such an automatic analyzer is to detect important organs and their boundaries under very low brightness contrast environment. Our fuzzy sigma binarization process is one of the answers for that problem. Another difficulty is to compensate information loss that happened during such image processing procedures. Many morphologically motivated image processing algorithms are applied for that purpose. The proposed method is verified as successful in extracting DCFs and measuring thicknesses in experiment using two hundred 800 × 600 DICOM ultrasonography images with 98.5% extraction rate. Also, the thickness of DCFs automatically measured by this software has small difference (less than 0.3 cm) for 89.8% of extracted DCFs. Hindawi Publishing Corporation 2016 2016-02-01 /pmc/articles/PMC4753340/ /pubmed/26949411 http://dx.doi.org/10.1155/2016/5892051 Text en Copyright © 2016 Kwang Baek Kim et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kim, Kwang Baek Song, Doo Heon Park, Hyun Jun Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images |
title | Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images |
title_full | Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images |
title_fullStr | Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images |
title_full_unstemmed | Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images |
title_short | Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images |
title_sort | computer vision based automatic extraction and thickness measurement of deep cervical flexor from ultrasonic images |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753340/ https://www.ncbi.nlm.nih.gov/pubmed/26949411 http://dx.doi.org/10.1155/2016/5892051 |
work_keys_str_mv | AT kimkwangbaek computervisionbasedautomaticextractionandthicknessmeasurementofdeepcervicalflexorfromultrasonicimages AT songdooheon computervisionbasedautomaticextractionandthicknessmeasurementofdeepcervicalflexorfromultrasonicimages AT parkhyunjun computervisionbasedautomaticextractionandthicknessmeasurementofdeepcervicalflexorfromultrasonicimages |