Cargando…
Machine Learning Strategy for Accelerated Design of Polymer Dielectrics
The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating po...
Autores principales: | Mannodi-Kanakkithodi, Arun, Pilania, Ghanshyam, Huan, Tran Doan, Lookman, Turab, Ramprasad, Rampi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753456/ https://www.ncbi.nlm.nih.gov/pubmed/26876223 http://dx.doi.org/10.1038/srep20952 |
Ejemplares similares
-
A polymer dataset for accelerated property prediction and design
por: Huan, Tran Doan, et al.
Publicado: (2016) -
Machine learning bandgaps of double perovskites
por: Pilania, G., et al.
Publicado: (2016) -
Accelerating materials property predictions using machine learning
por: Pilania, Ghanshyam, et al.
Publicado: (2013) -
Computational screening of organic polymer dielectrics for novel accelerator technologies
por: Pilania, Ghanshyam, et al.
Publicado: (2018) -
polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics
por: Kuenneth, Christopher, et al.
Publicado: (2023)