Cargando…
Discovery of Radioiodinated Monomeric Anthraquinones as a Novel Class of Necrosis Avid Agents for Early Imaging of Necrotic Myocardium
Assessment of myocardial viability is deemed necessary to aid in clinical decision making whether to recommend revascularization therapy for patients with myocardial infarction (MI). Dianthraquinones such as hypericin (Hyp) selectively accumulate in necrotic myocardium, but were unsuitable for early...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754898/ https://www.ncbi.nlm.nih.gov/pubmed/26878909 http://dx.doi.org/10.1038/srep21341 |
Sumario: | Assessment of myocardial viability is deemed necessary to aid in clinical decision making whether to recommend revascularization therapy for patients with myocardial infarction (MI). Dianthraquinones such as hypericin (Hyp) selectively accumulate in necrotic myocardium, but were unsuitable for early imaging after administration to assess myocardial viability. Since dianthraquinones can be composed by coupling two molecules of monomeric anthraquinone and the active center can be found by splitting chemical structure, we propose that monomeric anthraquinones may be effective functional groups for necrosis targetability. In this study, eight radioiodinated monomeric anthraquinones were evaluated as novel necrosis avid agents (NAAs) for imaging of necrotic myocardium. All (131)I-anthraquinones showed high affinity to necrotic tissues and (131)I-rhein emerged as the most promising compound. Infarcts were visualized on SPECT/CT images at 6 h after injection of (131)I-rhein, which was earlier than that with (131)I-Hyp. Moreover, (131)I-rhein showed satisfactory heart-to-blood, heart-to-liver and heart-to-lung ratios for obtaining images of good diagnostic quality. (131)I-rhein was a more promising “hot spot imaging” tracer for earlier visualization of necrotic myocardium than (131)I-Hyp, which supported further development of radiopharmaceuticals based on rhein for SPECT/CT ((123)I and (99m)Tc) or PET/CT imaging ((18)F and (124)I) of myocardial necrosis. |
---|