Cargando…
Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®
BACKGROUND: Selenium (Se) is required for the synthesis of proteins (selenoproteins) with essential biological functions. Selenoproteins have a crucial role in the maintenance of cellular redox homeostasis in nearly all tissues, and are also involved in thyroid hormone metabolism, inflammation and i...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754912/ https://www.ncbi.nlm.nih.gov/pubmed/26880213 http://dx.doi.org/10.1186/s12864-016-2418-7 |
_version_ | 1782416110260322304 |
---|---|
author | Pacitti, D. Lawan, M. M. Feldmann, J. Sweetman, J. Wang, T. Martin, S. A. M. Secombes, C. J. |
author_facet | Pacitti, D. Lawan, M. M. Feldmann, J. Sweetman, J. Wang, T. Martin, S. A. M. Secombes, C. J. |
author_sort | Pacitti, D. |
collection | PubMed |
description | BACKGROUND: Selenium (Se) is required for the synthesis of proteins (selenoproteins) with essential biological functions. Selenoproteins have a crucial role in the maintenance of cellular redox homeostasis in nearly all tissues, and are also involved in thyroid hormone metabolism, inflammation and immunity. Several immune processes rely on Se status and can be compromised if this element is present below the required level. Previous work has supported the notion that when Se is delivered at levels above those deemed to be the minimal required but below toxic concentrations it can have a boosting effect on the organism’s immune response. Based on this concept Se-enriched supplements may represent a valuable resource for functional feeds in animal farming, including aquaculture. RESULTS: In this study we tested the effects of Se supplemented as Sel-Plex during an immune challenge induced by polyinosinic:polycytidylic acid (poly(I:C)), a pathogen-associated molecular pattern (PAMP) that mimics viral infection. Trout were fed two diets enriched with 1 or 4 mg Se Kg(−1) of feed (dry weight) by Sel-Plex addition and a commercial formulation as control. The whole trout transcriptomic response was investigated by microarray and gene ontology analysis, the latter carried out to highlight the biological processes that were influenced by Sel-Plex supplementation in the head kidney (HK) and liver, the main immune and metabolic organs in fish. Overall, Sel-Plex enrichement up to 4 mg Se Kg(−1) induced an important response in the trout HK, eliciting an up-regulation of several genes involved in pathways connected with hematopoiesis and immunity. In contrast, a more constrained response was seen in the liver, with lipid metabolism being the main pathway altered by Se supplementation. Upon stimulation with poly(I:C), supplementation of 4 mg Se Kg(−1) increased the expression of principal mediators of the antiviral defences, especially IFN-γ, and down-stream molecules involved in the cell-mediated immune response. CONCLUSIONS: Supplementation of diets with 4 mg Se Kg(−1) using Sel-Plex remarkably improved the fish response to viral PAMP stimulation. Sel-Plex, being a highly bioavailable supplement of organic Se, might represent a suitable option for supplementation of fish feeds, to achieve the final aim of improving fish fitness and resistance against immune challenges. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2418-7) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4754912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47549122016-02-17 Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex® Pacitti, D. Lawan, M. M. Feldmann, J. Sweetman, J. Wang, T. Martin, S. A. M. Secombes, C. J. BMC Genomics Research Article BACKGROUND: Selenium (Se) is required for the synthesis of proteins (selenoproteins) with essential biological functions. Selenoproteins have a crucial role in the maintenance of cellular redox homeostasis in nearly all tissues, and are also involved in thyroid hormone metabolism, inflammation and immunity. Several immune processes rely on Se status and can be compromised if this element is present below the required level. Previous work has supported the notion that when Se is delivered at levels above those deemed to be the minimal required but below toxic concentrations it can have a boosting effect on the organism’s immune response. Based on this concept Se-enriched supplements may represent a valuable resource for functional feeds in animal farming, including aquaculture. RESULTS: In this study we tested the effects of Se supplemented as Sel-Plex during an immune challenge induced by polyinosinic:polycytidylic acid (poly(I:C)), a pathogen-associated molecular pattern (PAMP) that mimics viral infection. Trout were fed two diets enriched with 1 or 4 mg Se Kg(−1) of feed (dry weight) by Sel-Plex addition and a commercial formulation as control. The whole trout transcriptomic response was investigated by microarray and gene ontology analysis, the latter carried out to highlight the biological processes that were influenced by Sel-Plex supplementation in the head kidney (HK) and liver, the main immune and metabolic organs in fish. Overall, Sel-Plex enrichement up to 4 mg Se Kg(−1) induced an important response in the trout HK, eliciting an up-regulation of several genes involved in pathways connected with hematopoiesis and immunity. In contrast, a more constrained response was seen in the liver, with lipid metabolism being the main pathway altered by Se supplementation. Upon stimulation with poly(I:C), supplementation of 4 mg Se Kg(−1) increased the expression of principal mediators of the antiviral defences, especially IFN-γ, and down-stream molecules involved in the cell-mediated immune response. CONCLUSIONS: Supplementation of diets with 4 mg Se Kg(−1) using Sel-Plex remarkably improved the fish response to viral PAMP stimulation. Sel-Plex, being a highly bioavailable supplement of organic Se, might represent a suitable option for supplementation of fish feeds, to achieve the final aim of improving fish fitness and resistance against immune challenges. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2418-7) contains supplementary material, which is available to authorized users. BioMed Central 2016-02-16 /pmc/articles/PMC4754912/ /pubmed/26880213 http://dx.doi.org/10.1186/s12864-016-2418-7 Text en © Pacitti et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Pacitti, D. Lawan, M. M. Feldmann, J. Sweetman, J. Wang, T. Martin, S. A. M. Secombes, C. J. Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex® |
title | Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex® |
title_full | Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex® |
title_fullStr | Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex® |
title_full_unstemmed | Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex® |
title_short | Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex® |
title_sort | impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (oncorhynchus mykiss) fed supranutritional levels of sel-plex® |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754912/ https://www.ncbi.nlm.nih.gov/pubmed/26880213 http://dx.doi.org/10.1186/s12864-016-2418-7 |
work_keys_str_mv | AT pacittid impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex AT lawanmm impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex AT feldmannj impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex AT sweetmanj impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex AT wangt impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex AT martinsam impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex AT secombescj impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex |