Cargando…

Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®

BACKGROUND: Selenium (Se) is required for the synthesis of proteins (selenoproteins) with essential biological functions. Selenoproteins have a crucial role in the maintenance of cellular redox homeostasis in nearly all tissues, and are also involved in thyroid hormone metabolism, inflammation and i...

Descripción completa

Detalles Bibliográficos
Autores principales: Pacitti, D., Lawan, M. M., Feldmann, J., Sweetman, J., Wang, T., Martin, S. A. M., Secombes, C. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754912/
https://www.ncbi.nlm.nih.gov/pubmed/26880213
http://dx.doi.org/10.1186/s12864-016-2418-7
_version_ 1782416110260322304
author Pacitti, D.
Lawan, M. M.
Feldmann, J.
Sweetman, J.
Wang, T.
Martin, S. A. M.
Secombes, C. J.
author_facet Pacitti, D.
Lawan, M. M.
Feldmann, J.
Sweetman, J.
Wang, T.
Martin, S. A. M.
Secombes, C. J.
author_sort Pacitti, D.
collection PubMed
description BACKGROUND: Selenium (Se) is required for the synthesis of proteins (selenoproteins) with essential biological functions. Selenoproteins have a crucial role in the maintenance of cellular redox homeostasis in nearly all tissues, and are also involved in thyroid hormone metabolism, inflammation and immunity. Several immune processes rely on Se status and can be compromised if this element is present below the required level. Previous work has supported the notion that when Se is delivered at levels above those deemed to be the minimal required but below toxic concentrations it can have a boosting effect on the organism’s immune response. Based on this concept Se-enriched supplements may represent a valuable resource for functional feeds in animal farming, including aquaculture. RESULTS: In this study we tested the effects of Se supplemented as Sel-Plex during an immune challenge induced by polyinosinic:polycytidylic acid (poly(I:C)), a pathogen-associated molecular pattern (PAMP) that mimics viral infection. Trout were fed two diets enriched with 1 or 4 mg Se Kg(−1) of feed (dry weight) by Sel-Plex addition and a commercial formulation as control. The whole trout transcriptomic response was investigated by microarray and gene ontology analysis, the latter carried out to highlight the biological processes that were influenced by Sel-Plex supplementation in the head kidney (HK) and liver, the main immune and metabolic organs in fish. Overall, Sel-Plex enrichement up to 4 mg Se Kg(−1) induced an important response in the trout HK, eliciting an up-regulation of several genes involved in pathways connected with hematopoiesis and immunity. In contrast, a more constrained response was seen in the liver, with lipid metabolism being the main pathway altered by Se supplementation. Upon stimulation with poly(I:C), supplementation of 4 mg Se Kg(−1) increased the expression of principal mediators of the antiviral defences, especially IFN-γ, and down-stream molecules involved in the cell-mediated immune response. CONCLUSIONS: Supplementation of diets with 4 mg Se Kg(−1) using Sel-Plex remarkably improved the fish response to viral PAMP stimulation. Sel-Plex, being a highly bioavailable supplement of organic Se, might represent a suitable option for supplementation of fish feeds, to achieve the final aim of improving fish fitness and resistance against immune challenges. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2418-7) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4754912
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-47549122016-02-17 Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex® Pacitti, D. Lawan, M. M. Feldmann, J. Sweetman, J. Wang, T. Martin, S. A. M. Secombes, C. J. BMC Genomics Research Article BACKGROUND: Selenium (Se) is required for the synthesis of proteins (selenoproteins) with essential biological functions. Selenoproteins have a crucial role in the maintenance of cellular redox homeostasis in nearly all tissues, and are also involved in thyroid hormone metabolism, inflammation and immunity. Several immune processes rely on Se status and can be compromised if this element is present below the required level. Previous work has supported the notion that when Se is delivered at levels above those deemed to be the minimal required but below toxic concentrations it can have a boosting effect on the organism’s immune response. Based on this concept Se-enriched supplements may represent a valuable resource for functional feeds in animal farming, including aquaculture. RESULTS: In this study we tested the effects of Se supplemented as Sel-Plex during an immune challenge induced by polyinosinic:polycytidylic acid (poly(I:C)), a pathogen-associated molecular pattern (PAMP) that mimics viral infection. Trout were fed two diets enriched with 1 or 4 mg Se Kg(−1) of feed (dry weight) by Sel-Plex addition and a commercial formulation as control. The whole trout transcriptomic response was investigated by microarray and gene ontology analysis, the latter carried out to highlight the biological processes that were influenced by Sel-Plex supplementation in the head kidney (HK) and liver, the main immune and metabolic organs in fish. Overall, Sel-Plex enrichement up to 4 mg Se Kg(−1) induced an important response in the trout HK, eliciting an up-regulation of several genes involved in pathways connected with hematopoiesis and immunity. In contrast, a more constrained response was seen in the liver, with lipid metabolism being the main pathway altered by Se supplementation. Upon stimulation with poly(I:C), supplementation of 4 mg Se Kg(−1) increased the expression of principal mediators of the antiviral defences, especially IFN-γ, and down-stream molecules involved in the cell-mediated immune response. CONCLUSIONS: Supplementation of diets with 4 mg Se Kg(−1) using Sel-Plex remarkably improved the fish response to viral PAMP stimulation. Sel-Plex, being a highly bioavailable supplement of organic Se, might represent a suitable option for supplementation of fish feeds, to achieve the final aim of improving fish fitness and resistance against immune challenges. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2418-7) contains supplementary material, which is available to authorized users. BioMed Central 2016-02-16 /pmc/articles/PMC4754912/ /pubmed/26880213 http://dx.doi.org/10.1186/s12864-016-2418-7 Text en © Pacitti et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Pacitti, D.
Lawan, M. M.
Feldmann, J.
Sweetman, J.
Wang, T.
Martin, S. A. M.
Secombes, C. J.
Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®
title Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®
title_full Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®
title_fullStr Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®
title_full_unstemmed Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®
title_short Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®
title_sort impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (oncorhynchus mykiss) fed supranutritional levels of sel-plex®
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754912/
https://www.ncbi.nlm.nih.gov/pubmed/26880213
http://dx.doi.org/10.1186/s12864-016-2418-7
work_keys_str_mv AT pacittid impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex
AT lawanmm impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex
AT feldmannj impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex
AT sweetmanj impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex
AT wangt impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex
AT martinsam impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex
AT secombescj impactofseleniumsupplementationonfishantiviralresponsesawholetranscriptomicanalysisinrainbowtroutoncorhynchusmykissfedsupranutritionallevelsofselplex