Cargando…

An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry

RATIONALE: Due to the recent rapid increase in electronic cigarette (e‐cigarette) use worldwide, there is a strong scientific but also practical interest in analyzing e‐cigarette aerosols. Most studies to date have used standardized but time‐consuming offline technologies. Here a proof‐of‐concept fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Breiev, Kostiantyn, Burseg, Kerstin M. M., O'Connell, Grant, Hartungen, Eugen, Biel, Stefan S., Cahours, Xavier, Colard, Stéphane, Märk, Tilmann D., Sulzer, Philipp
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755144/
https://www.ncbi.nlm.nih.gov/pubmed/26864521
http://dx.doi.org/10.1002/rcm.7487
_version_ 1782416153089409024
author Breiev, Kostiantyn
Burseg, Kerstin M. M.
O'Connell, Grant
Hartungen, Eugen
Biel, Stefan S.
Cahours, Xavier
Colard, Stéphane
Märk, Tilmann D.
Sulzer, Philipp
author_facet Breiev, Kostiantyn
Burseg, Kerstin M. M.
O'Connell, Grant
Hartungen, Eugen
Biel, Stefan S.
Cahours, Xavier
Colard, Stéphane
Märk, Tilmann D.
Sulzer, Philipp
author_sort Breiev, Kostiantyn
collection PubMed
description RATIONALE: Due to the recent rapid increase in electronic cigarette (e‐cigarette) use worldwide, there is a strong scientific but also practical interest in analyzing e‐cigarette aerosols. Most studies to date have used standardized but time‐consuming offline technologies. Here a proof‐of‐concept for a fast online quantification setup based on proton transfer reaction mass spectrometry (PTR‐MS) is presented. METHODS: The combination of a novel sampling interface with a time‐of‐flight PTR‐MS instrument specially designed for three scenarios is introduced: (i) mainstream aerosol analysis (aerosol that the user inhales prior to exhalation), and analysis of exhaled breath following (ii) mouth‐hold (no inhalation) and (iii) inhalation of e‐cigarette aerosols. A double‐stage dilution setup allows the various concentration ranges in these scenarios to be accessed. RESULTS: First, the instrument is calibrated for the three principal constituents of the e‐cigarettes' liquids, namely propylene glycol, vegetable glycerol and nicotine. With the double‐stage dilution the instrument's dynamic range was easily adapted to cover the concentration ranges obtained in the three scenarios: 20–1100 ppmv for the mainstream aerosol characterisation; 4–300 ppmv for the mouth‐hold; and 2 ppbv to 20 ppmv for the inhalation experiment. CONCLUSIONS: It is demonstrated that the novel setup enables fast, high time resolution e‐cigarette studies with online quantification. This enables the analysis and understanding of any puff‐by‐puff variations in e‐cigarette aerosols. Large‐scale studies involving a high number of volunteers will benefit from considerably higher sample throughput and shorter data processing times. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.
format Online
Article
Text
id pubmed-4755144
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-47551442016-02-25 An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry Breiev, Kostiantyn Burseg, Kerstin M. M. O'Connell, Grant Hartungen, Eugen Biel, Stefan S. Cahours, Xavier Colard, Stéphane Märk, Tilmann D. Sulzer, Philipp Rapid Commun Mass Spectrom Research Articles RATIONALE: Due to the recent rapid increase in electronic cigarette (e‐cigarette) use worldwide, there is a strong scientific but also practical interest in analyzing e‐cigarette aerosols. Most studies to date have used standardized but time‐consuming offline technologies. Here a proof‐of‐concept for a fast online quantification setup based on proton transfer reaction mass spectrometry (PTR‐MS) is presented. METHODS: The combination of a novel sampling interface with a time‐of‐flight PTR‐MS instrument specially designed for three scenarios is introduced: (i) mainstream aerosol analysis (aerosol that the user inhales prior to exhalation), and analysis of exhaled breath following (ii) mouth‐hold (no inhalation) and (iii) inhalation of e‐cigarette aerosols. A double‐stage dilution setup allows the various concentration ranges in these scenarios to be accessed. RESULTS: First, the instrument is calibrated for the three principal constituents of the e‐cigarettes' liquids, namely propylene glycol, vegetable glycerol and nicotine. With the double‐stage dilution the instrument's dynamic range was easily adapted to cover the concentration ranges obtained in the three scenarios: 20–1100 ppmv for the mainstream aerosol characterisation; 4–300 ppmv for the mouth‐hold; and 2 ppbv to 20 ppmv for the inhalation experiment. CONCLUSIONS: It is demonstrated that the novel setup enables fast, high time resolution e‐cigarette studies with online quantification. This enables the analysis and understanding of any puff‐by‐puff variations in e‐cigarette aerosols. Large‐scale studies involving a high number of volunteers will benefit from considerably higher sample throughput and shorter data processing times. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. John Wiley and Sons Inc. 2016-02-11 2016-03-30 /pmc/articles/PMC4755144/ /pubmed/26864521 http://dx.doi.org/10.1002/rcm.7487 Text en © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Breiev, Kostiantyn
Burseg, Kerstin M. M.
O'Connell, Grant
Hartungen, Eugen
Biel, Stefan S.
Cahours, Xavier
Colard, Stéphane
Märk, Tilmann D.
Sulzer, Philipp
An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry
title An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry
title_full An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry
title_fullStr An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry
title_full_unstemmed An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry
title_short An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry
title_sort online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755144/
https://www.ncbi.nlm.nih.gov/pubmed/26864521
http://dx.doi.org/10.1002/rcm.7487
work_keys_str_mv AT breievkostiantyn anonlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT bursegkerstinmm anonlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT oconnellgrant anonlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT hartungeneugen anonlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT bielstefans anonlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT cahoursxavier anonlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT colardstephane anonlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT marktilmannd anonlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT sulzerphilipp anonlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT breievkostiantyn onlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT bursegkerstinmm onlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT oconnellgrant onlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT hartungeneugen onlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT bielstefans onlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT cahoursxavier onlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT colardstephane onlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT marktilmannd onlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry
AT sulzerphilipp onlinemethodfortheanalysisofvolatileorganiccompoundsinelectroniccigaretteaerosolbasedonprotontransferreactionmassspectrometry