Cargando…
Chunking improves symbolic sequence processing and relies on working memory gating mechanisms
Chunking, namely the grouping of sequence elements in clusters, is ubiquitous during sequence processing, but its impact on performance remains debated. Here, we found that participants who adopted a consistent chunking strategy during symbolic sequence learning showed a greater improvement of their...
Autores principales: | Solopchuk, Oleg, Alamia, Andrea, Olivier, Etienne, Zénon, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755266/ https://www.ncbi.nlm.nih.gov/pubmed/26884228 http://dx.doi.org/10.1101/lm.041277.115 |
Ejemplares similares
-
Non-parametric Algorithm to Isolate Chunks in Response Sequences
por: Alamia, Andrea, et al.
Publicado: (2016) -
Strong Conscious Cues Suppress Preferential Gaze Allocation to Unconscious Cues
por: Alamia, Andrea, et al.
Publicado: (2018) -
Symbolic number comparison and number priming do not rely on the same mechanism
por: Krajcsi, Attila, et al.
Publicado: (2022) -
Chunking in working memory via content-free labels
por: Huang, Liqiang, et al.
Publicado: (2018) -
Real-time learning of predictive recognition categories that chunk sequences of items stored in working memory
por: Kazerounian, Sohrob, et al.
Publicado: (2014)