Cargando…

How to Improve Cord Blood Engraftment?

Various factors make cord blood (CB) a significant source of hematopoietic stem cells (HSCs), including ease of procurement and lack of donor attrition, with the ability to process and store the donor cells long term. Importantly, high proliferative potential of the immature HSCs allows one log less...

Descripción completa

Detalles Bibliográficos
Autores principales: Beksac, Meral, Yurdakul, Pinar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756107/
https://www.ncbi.nlm.nih.gov/pubmed/26925402
http://dx.doi.org/10.3389/fmed.2016.00007
Descripción
Sumario:Various factors make cord blood (CB) a significant source of hematopoietic stem cells (HSCs), including ease of procurement and lack of donor attrition, with the ability to process and store the donor cells long term. Importantly, high proliferative potential of the immature HSCs allows one log less use of cells compared to bone marrow or peripheral blood stem cells. As total nucleated cell (TNC) and CD34(+) cell content of CB grafts are correlated to engraftment rate and speed, strategies to expand HSC and homing have been developed. This chapter will focus only on modalities such as intrabone administration, fucosylation, CD26 inhibition, prostaglandin E2 derivative or complement 3 exposure, and SDF-1/CXCR4/CXCL-12 pathway interventions that have been experimented successfully. Furthermore, increasing evidence in line with better recognition of CB progenitors that are involved in engraftment and homing will also be addressed.