Cargando…
Stimuli Reduce the Dimensionality of Cortical Activity
The activity of ensembles of simultaneously recorded neurons can be represented as a set of points in the space of firing rates. Even though the dimension of this space is equal to the ensemble size, neural activity can be effectively localized on smaller subspaces. The dimensionality of the neural...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756130/ https://www.ncbi.nlm.nih.gov/pubmed/26924968 http://dx.doi.org/10.3389/fnsys.2016.00011 |
_version_ | 1782416274070962176 |
---|---|
author | Mazzucato, Luca Fontanini, Alfredo La Camera, Giancarlo |
author_facet | Mazzucato, Luca Fontanini, Alfredo La Camera, Giancarlo |
author_sort | Mazzucato, Luca |
collection | PubMed |
description | The activity of ensembles of simultaneously recorded neurons can be represented as a set of points in the space of firing rates. Even though the dimension of this space is equal to the ensemble size, neural activity can be effectively localized on smaller subspaces. The dimensionality of the neural space is an important determinant of the computational tasks supported by the neural activity. Here, we investigate the dimensionality of neural ensembles from the sensory cortex of alert rats during periods of ongoing (inter-trial) and stimulus-evoked activity. We find that dimensionality grows linearly with ensemble size, and grows significantly faster during ongoing activity compared to evoked activity. We explain these results using a spiking network model based on a clustered architecture. The model captures the difference in growth rate between ongoing and evoked activity and predicts a characteristic scaling with ensemble size that could be tested in high-density multi-electrode recordings. Moreover, we present a simple theory that predicts the existence of an upper bound on dimensionality. This upper bound is inversely proportional to the amount of pair-wise correlations and, compared to a homogeneous network without clusters, it is larger by a factor equal to the number of clusters. The empirical estimation of such bounds depends on the number and duration of trials and is well predicted by the theory. Together, these results provide a framework to analyze neural dimensionality in alert animals, its behavior under stimulus presentation, and its theoretical dependence on ensemble size, number of clusters, and correlations in spiking network models. |
format | Online Article Text |
id | pubmed-4756130 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-47561302016-02-26 Stimuli Reduce the Dimensionality of Cortical Activity Mazzucato, Luca Fontanini, Alfredo La Camera, Giancarlo Front Syst Neurosci Neuroscience The activity of ensembles of simultaneously recorded neurons can be represented as a set of points in the space of firing rates. Even though the dimension of this space is equal to the ensemble size, neural activity can be effectively localized on smaller subspaces. The dimensionality of the neural space is an important determinant of the computational tasks supported by the neural activity. Here, we investigate the dimensionality of neural ensembles from the sensory cortex of alert rats during periods of ongoing (inter-trial) and stimulus-evoked activity. We find that dimensionality grows linearly with ensemble size, and grows significantly faster during ongoing activity compared to evoked activity. We explain these results using a spiking network model based on a clustered architecture. The model captures the difference in growth rate between ongoing and evoked activity and predicts a characteristic scaling with ensemble size that could be tested in high-density multi-electrode recordings. Moreover, we present a simple theory that predicts the existence of an upper bound on dimensionality. This upper bound is inversely proportional to the amount of pair-wise correlations and, compared to a homogeneous network without clusters, it is larger by a factor equal to the number of clusters. The empirical estimation of such bounds depends on the number and duration of trials and is well predicted by the theory. Together, these results provide a framework to analyze neural dimensionality in alert animals, its behavior under stimulus presentation, and its theoretical dependence on ensemble size, number of clusters, and correlations in spiking network models. Frontiers Media S.A. 2016-02-17 /pmc/articles/PMC4756130/ /pubmed/26924968 http://dx.doi.org/10.3389/fnsys.2016.00011 Text en Copyright © 2016 Mazzucato, Fontanini and La Camera. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Mazzucato, Luca Fontanini, Alfredo La Camera, Giancarlo Stimuli Reduce the Dimensionality of Cortical Activity |
title | Stimuli Reduce the Dimensionality of Cortical Activity |
title_full | Stimuli Reduce the Dimensionality of Cortical Activity |
title_fullStr | Stimuli Reduce the Dimensionality of Cortical Activity |
title_full_unstemmed | Stimuli Reduce the Dimensionality of Cortical Activity |
title_short | Stimuli Reduce the Dimensionality of Cortical Activity |
title_sort | stimuli reduce the dimensionality of cortical activity |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756130/ https://www.ncbi.nlm.nih.gov/pubmed/26924968 http://dx.doi.org/10.3389/fnsys.2016.00011 |
work_keys_str_mv | AT mazzucatoluca stimulireducethedimensionalityofcorticalactivity AT fontaninialfredo stimulireducethedimensionalityofcorticalactivity AT lacameragiancarlo stimulireducethedimensionalityofcorticalactivity |