Cargando…

High-density grids for efficient data collection from multiple crystals

Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtose...

Descripción completa

Detalles Bibliográficos
Autores principales: Baxter, Elizabeth L., Aguila, Laura, Alonso-Mori, Roberto, Barnes, Christopher O., Bonagura, Christopher A., Brehmer, Winnie, Brunger, Axel T., Calero, Guillermo, Caradoc-Davies, Tom T., Chatterjee, Ruchira, Degrado, William F., Fraser, James S., Ibrahim, Mohamed, Kern, Jan, Kobilka, Brian K., Kruse, Andrew C., Larsson, Karl M., Lemke, Heinrik T., Lyubimov, Artem Y., Manglik, Aashish, McPhillips, Scott E., Norgren, Erik, Pang, Siew S., Soltis, S. M., Song, Jinhu, Thomaston, Jessica, Tsai, Yingssu, Weis, William I., Woldeyes, Rahel A., Yachandra, Vittal, Yano, Junko, Zouni, Athina, Cohen, Aina E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756618/
https://www.ncbi.nlm.nih.gov/pubmed/26894529
http://dx.doi.org/10.1107/S2059798315020847
_version_ 1782416365991231488
author Baxter, Elizabeth L.
Aguila, Laura
Alonso-Mori, Roberto
Barnes, Christopher O.
Bonagura, Christopher A.
Brehmer, Winnie
Brunger, Axel T.
Calero, Guillermo
Caradoc-Davies, Tom T.
Chatterjee, Ruchira
Degrado, William F.
Fraser, James S.
Ibrahim, Mohamed
Kern, Jan
Kobilka, Brian K.
Kruse, Andrew C.
Larsson, Karl M.
Lemke, Heinrik T.
Lyubimov, Artem Y.
Manglik, Aashish
McPhillips, Scott E.
Norgren, Erik
Pang, Siew S.
Soltis, S. M.
Song, Jinhu
Thomaston, Jessica
Tsai, Yingssu
Weis, William I.
Woldeyes, Rahel A.
Yachandra, Vittal
Yano, Junko
Zouni, Athina
Cohen, Aina E.
author_facet Baxter, Elizabeth L.
Aguila, Laura
Alonso-Mori, Roberto
Barnes, Christopher O.
Bonagura, Christopher A.
Brehmer, Winnie
Brunger, Axel T.
Calero, Guillermo
Caradoc-Davies, Tom T.
Chatterjee, Ruchira
Degrado, William F.
Fraser, James S.
Ibrahim, Mohamed
Kern, Jan
Kobilka, Brian K.
Kruse, Andrew C.
Larsson, Karl M.
Lemke, Heinrik T.
Lyubimov, Artem Y.
Manglik, Aashish
McPhillips, Scott E.
Norgren, Erik
Pang, Siew S.
Soltis, S. M.
Song, Jinhu
Thomaston, Jessica
Tsai, Yingssu
Weis, William I.
Woldeyes, Rahel A.
Yachandra, Vittal
Yano, Junko
Zouni, Athina
Cohen, Aina E.
author_sort Baxter, Elizabeth L.
collection PubMed
description Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into the Blu-Ice/DCSS experimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.
format Online
Article
Text
id pubmed-4756618
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-47566182016-02-26 High-density grids for efficient data collection from multiple crystals Baxter, Elizabeth L. Aguila, Laura Alonso-Mori, Roberto Barnes, Christopher O. Bonagura, Christopher A. Brehmer, Winnie Brunger, Axel T. Calero, Guillermo Caradoc-Davies, Tom T. Chatterjee, Ruchira Degrado, William F. Fraser, James S. Ibrahim, Mohamed Kern, Jan Kobilka, Brian K. Kruse, Andrew C. Larsson, Karl M. Lemke, Heinrik T. Lyubimov, Artem Y. Manglik, Aashish McPhillips, Scott E. Norgren, Erik Pang, Siew S. Soltis, S. M. Song, Jinhu Thomaston, Jessica Tsai, Yingssu Weis, William I. Woldeyes, Rahel A. Yachandra, Vittal Yano, Junko Zouni, Athina Cohen, Aina E. Acta Crystallogr D Struct Biol Research Papers Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into the Blu-Ice/DCSS experimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures. International Union of Crystallography 2016-01-01 /pmc/articles/PMC4756618/ /pubmed/26894529 http://dx.doi.org/10.1107/S2059798315020847 Text en © Baxter et al. 2016 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
spellingShingle Research Papers
Baxter, Elizabeth L.
Aguila, Laura
Alonso-Mori, Roberto
Barnes, Christopher O.
Bonagura, Christopher A.
Brehmer, Winnie
Brunger, Axel T.
Calero, Guillermo
Caradoc-Davies, Tom T.
Chatterjee, Ruchira
Degrado, William F.
Fraser, James S.
Ibrahim, Mohamed
Kern, Jan
Kobilka, Brian K.
Kruse, Andrew C.
Larsson, Karl M.
Lemke, Heinrik T.
Lyubimov, Artem Y.
Manglik, Aashish
McPhillips, Scott E.
Norgren, Erik
Pang, Siew S.
Soltis, S. M.
Song, Jinhu
Thomaston, Jessica
Tsai, Yingssu
Weis, William I.
Woldeyes, Rahel A.
Yachandra, Vittal
Yano, Junko
Zouni, Athina
Cohen, Aina E.
High-density grids for efficient data collection from multiple crystals
title High-density grids for efficient data collection from multiple crystals
title_full High-density grids for efficient data collection from multiple crystals
title_fullStr High-density grids for efficient data collection from multiple crystals
title_full_unstemmed High-density grids for efficient data collection from multiple crystals
title_short High-density grids for efficient data collection from multiple crystals
title_sort high-density grids for efficient data collection from multiple crystals
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756618/
https://www.ncbi.nlm.nih.gov/pubmed/26894529
http://dx.doi.org/10.1107/S2059798315020847
work_keys_str_mv AT baxterelizabethl highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT aguilalaura highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT alonsomoriroberto highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT barneschristophero highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT bonagurachristophera highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT brehmerwinnie highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT brungeraxelt highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT caleroguillermo highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT caradocdaviestomt highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT chatterjeeruchira highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT degradowilliamf highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT fraserjamess highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT ibrahimmohamed highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT kernjan highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT kobilkabriank highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT kruseandrewc highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT larssonkarlm highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT lemkeheinrikt highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT lyubimovartemy highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT manglikaashish highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT mcphillipsscotte highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT norgrenerik highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT pangsiews highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT soltissm highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT songjinhu highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT thomastonjessica highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT tsaiyingssu highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT weiswilliami highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT woldeyesrahela highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT yachandravittal highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT yanojunko highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT zouniathina highdensitygridsforefficientdatacollectionfrommultiplecrystals
AT cohenainae highdensitygridsforefficientdatacollectionfrommultiplecrystals