Cargando…
Fluorescence microscopy image noise reduction using a stochastically-connected random field model
Fluorescence microscopy is an essential part of a biologist’s toolkit, allowing assaying of many parameters like subcellular localization of proteins, changes in cytoskeletal dynamics, protein-protein interactions, and the concentration of specific cellular ions. A fundamental challenge with using f...
Autores principales: | Haider, S. A., Cameron, A., Siva, P., Lui, D., Shafiee, M. J., Boroomand, A., Haider, N., Wong, A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756687/ https://www.ncbi.nlm.nih.gov/pubmed/26884148 http://dx.doi.org/10.1038/srep20640 |
Ejemplares similares
-
Sparse reconstruction of compressive sensing MRI using cross-domain stochastically fully connected conditional random fields
por: Li, Edward, et al.
Publicado: (2016) -
Compensated Row-Column Ultrasound Imaging System Using Multilayered Edge Guided Stochastically Fully Connected Random Fields
por: Ben Daya, Ibrahim, et al.
Publicado: (2017) -
Monte Carlo-based noise compensation in coil intensity corrected endorectal MRI
por: Lui, Dorothy, et al.
Publicado: (2015) -
Light-field tomographic fluorescence lifetime imaging microscopy
por: Ma, Yayao, et al.
Publicado: (2023) -
Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images
por: Yang, Sejung, et al.
Publicado: (2015)