Cargando…
The role of COP1 in repression of photoperiodic flowering
Plants use the circadian clock as a timekeeping mechanism to regulate photoperiodic flowering in response to the seasonal changes. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), initially identified as a central repressor of seedling photomorphogenesis, was recently shown to be involved in the regulation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756798/ https://www.ncbi.nlm.nih.gov/pubmed/26949521 http://dx.doi.org/10.12688/f1000research.7346.1 |
Sumario: | Plants use the circadian clock as a timekeeping mechanism to regulate photoperiodic flowering in response to the seasonal changes. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), initially identified as a central repressor of seedling photomorphogenesis, was recently shown to be involved in the regulation of light input to the circadian clock, modulating the circadian rhythm and flowering. COP1 encodes a RING-finger E3 ubiquitin ligase and works in concert with SUPPRESSOR of phyA-105 (SPA) proteins to repress photoperiodic flowering by regulating proteasome-mediated degradation of CONSTANS (CO), a central regulator of photoperiodic flowering. In addition, COP1 and EARLY FLOWERING 3 (ELF3) indirectly modulate CO expression via the degradation of GIGANTEA (GI). Here, we summarize the current understanding of the molecular mechanisms underlying COP1’s role in controlling of photoperiodic flowering. |
---|