Cargando…

Effects of Temperature Stress and Aquarium Conditions on the Red Macroalga Delisea pulchra and its Associated Microbial Community

In recent years, there has been an increase in the rate and severity of diseases affecting habitat-forming marine organisms, such as corals, sponges, and macroalgae. Delisea pulchra is a temperate red macroalga that suffers from a bleaching disease that is more frequent during summer, when seawater...

Descripción completa

Detalles Bibliográficos
Autores principales: Zozaya-Valdés, Enrique, Roth-Schulze, Alexandra J., Thomas, Torsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757742/
https://www.ncbi.nlm.nih.gov/pubmed/26925036
http://dx.doi.org/10.3389/fmicb.2016.00161
_version_ 1782416501570011136
author Zozaya-Valdés, Enrique
Roth-Schulze, Alexandra J.
Thomas, Torsten
author_facet Zozaya-Valdés, Enrique
Roth-Schulze, Alexandra J.
Thomas, Torsten
author_sort Zozaya-Valdés, Enrique
collection PubMed
description In recent years, there has been an increase in the rate and severity of diseases affecting habitat-forming marine organisms, such as corals, sponges, and macroalgae. Delisea pulchra is a temperate red macroalga that suffers from a bleaching disease that is more frequent during summer, when seawater temperatures are elevated and the alga’s chemical defense is weakened. A bacterial cause for the disease is implied by previous studies showing that some isolated strains can cause bleaching in vitro and that host-associated microbial communities are distinct between diseased and healthy individuals. However, nothing is known about the successional events in the microbial community that occur during the development of the disease. To study this aspect in the future, we aimed here to develop an experimental setup to study the bleaching disease in a controllable aquarium environment. Application of a temperature stress (up to 27°C) did not cause a clear and consistent pattern of bleaching, suggesting that temperature alone might not be the only or main factor to cause the disease. The results also showed that the aquarium conditions alone are sufficient to produce bleaching symptoms. Microbial community analysis based on 16S rRNA gene fingerprinting and sequencing showed significant changes after 15 days in the aquarium, indicating that the native microbial associates of D. pulchra are not stably maintained. Microbial taxa that were enriched in the aquarium-held D. pulchra thalli, however, did not match on a taxonomic level those that have been found to be enriched in natural bleaching events. Together our observations indicate that environmental factors, other than the ones investigated here, might drive the bleaching disease in D. pulchra and that the aquarium conditions have substantial impact on the alga-associated microbiome.
format Online
Article
Text
id pubmed-4757742
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-47577422016-02-26 Effects of Temperature Stress and Aquarium Conditions on the Red Macroalga Delisea pulchra and its Associated Microbial Community Zozaya-Valdés, Enrique Roth-Schulze, Alexandra J. Thomas, Torsten Front Microbiol Microbiology In recent years, there has been an increase in the rate and severity of diseases affecting habitat-forming marine organisms, such as corals, sponges, and macroalgae. Delisea pulchra is a temperate red macroalga that suffers from a bleaching disease that is more frequent during summer, when seawater temperatures are elevated and the alga’s chemical defense is weakened. A bacterial cause for the disease is implied by previous studies showing that some isolated strains can cause bleaching in vitro and that host-associated microbial communities are distinct between diseased and healthy individuals. However, nothing is known about the successional events in the microbial community that occur during the development of the disease. To study this aspect in the future, we aimed here to develop an experimental setup to study the bleaching disease in a controllable aquarium environment. Application of a temperature stress (up to 27°C) did not cause a clear and consistent pattern of bleaching, suggesting that temperature alone might not be the only or main factor to cause the disease. The results also showed that the aquarium conditions alone are sufficient to produce bleaching symptoms. Microbial community analysis based on 16S rRNA gene fingerprinting and sequencing showed significant changes after 15 days in the aquarium, indicating that the native microbial associates of D. pulchra are not stably maintained. Microbial taxa that were enriched in the aquarium-held D. pulchra thalli, however, did not match on a taxonomic level those that have been found to be enriched in natural bleaching events. Together our observations indicate that environmental factors, other than the ones investigated here, might drive the bleaching disease in D. pulchra and that the aquarium conditions have substantial impact on the alga-associated microbiome. Frontiers Media S.A. 2016-02-18 /pmc/articles/PMC4757742/ /pubmed/26925036 http://dx.doi.org/10.3389/fmicb.2016.00161 Text en Copyright © 2016 Zozaya-Valdés, Roth-Schulze and Thomas. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Zozaya-Valdés, Enrique
Roth-Schulze, Alexandra J.
Thomas, Torsten
Effects of Temperature Stress and Aquarium Conditions on the Red Macroalga Delisea pulchra and its Associated Microbial Community
title Effects of Temperature Stress and Aquarium Conditions on the Red Macroalga Delisea pulchra and its Associated Microbial Community
title_full Effects of Temperature Stress and Aquarium Conditions on the Red Macroalga Delisea pulchra and its Associated Microbial Community
title_fullStr Effects of Temperature Stress and Aquarium Conditions on the Red Macroalga Delisea pulchra and its Associated Microbial Community
title_full_unstemmed Effects of Temperature Stress and Aquarium Conditions on the Red Macroalga Delisea pulchra and its Associated Microbial Community
title_short Effects of Temperature Stress and Aquarium Conditions on the Red Macroalga Delisea pulchra and its Associated Microbial Community
title_sort effects of temperature stress and aquarium conditions on the red macroalga delisea pulchra and its associated microbial community
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757742/
https://www.ncbi.nlm.nih.gov/pubmed/26925036
http://dx.doi.org/10.3389/fmicb.2016.00161
work_keys_str_mv AT zozayavaldesenrique effectsoftemperaturestressandaquariumconditionsontheredmacroalgadeliseapulchraanditsassociatedmicrobialcommunity
AT rothschulzealexandraj effectsoftemperaturestressandaquariumconditionsontheredmacroalgadeliseapulchraanditsassociatedmicrobialcommunity
AT thomastorsten effectsoftemperaturestressandaquariumconditionsontheredmacroalgadeliseapulchraanditsassociatedmicrobialcommunity