Cargando…

A Radio-genomics Approach for Identifying High Risk Estrogen Receptor-positive Breast Cancers on DCE-MRI: Preliminary Results in Predicting OncotypeDX Risk Scores

To identify computer extracted imaging features for estrogen receptor (ER)-positive breast cancers on dynamic contrast en-hanced (DCE)-MRI that are correlated with the low and high OncotypeDX risk categories. We collected 96 ER-positivebreast lesions with low (<18, N = 55) and high (>30, N = 4...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Tao, Bloch, B. Nicolas, Plecha, Donna, Thompson, CheryI L., Gilmore, Hannah, Jaffe, Carl, Harris, Lyndsay, Madabhushi, Anant
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757835/
https://www.ncbi.nlm.nih.gov/pubmed/26887643
http://dx.doi.org/10.1038/srep21394
_version_ 1782416519131561984
author Wan, Tao
Bloch, B. Nicolas
Plecha, Donna
Thompson, CheryI L.
Gilmore, Hannah
Jaffe, Carl
Harris, Lyndsay
Madabhushi, Anant
author_facet Wan, Tao
Bloch, B. Nicolas
Plecha, Donna
Thompson, CheryI L.
Gilmore, Hannah
Jaffe, Carl
Harris, Lyndsay
Madabhushi, Anant
author_sort Wan, Tao
collection PubMed
description To identify computer extracted imaging features for estrogen receptor (ER)-positive breast cancers on dynamic contrast en-hanced (DCE)-MRI that are correlated with the low and high OncotypeDX risk categories. We collected 96 ER-positivebreast lesions with low (<18, N = 55) and high (>30, N = 41) OncotypeDX recurrence scores. Each lesion was quantitatively charac-terize via 6 shape features, 3 pharmacokinetics, 4 enhancement kinetics, 4 intensity kinetics, 148 textural kinetics, 5 dynamic histogram of oriented gradient (DHoG), and 6 dynamic local binary pattern (DLBP) features. The extracted features were evaluated by a linear discriminant analysis (LDA) classifier in terms of their ability to distinguish low and high OncotypeDX risk categories. Classification performance was evaluated by area under the receiver operator characteristic curve (Az). The DHoG and DLBP achieved Az values of 0.84 and 0.80, respectively. The 6 top features identified via feature selection were subsequently combined with the LDA classifier to yield an Az of 0.87. The correlation analysis showed that DHoG (ρ = 0.85, P < 0.001) and DLBP (ρ = 0.83, P < 0.01) were significantly associated with the low and high risk classifications from the OncotypeDX assay. Our results indicated that computer extracted texture features of DCE-MRI were highly correlated with the high and low OncotypeDX risk categories for ER-positive cancers.
format Online
Article
Text
id pubmed-4757835
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-47578352016-02-25 A Radio-genomics Approach for Identifying High Risk Estrogen Receptor-positive Breast Cancers on DCE-MRI: Preliminary Results in Predicting OncotypeDX Risk Scores Wan, Tao Bloch, B. Nicolas Plecha, Donna Thompson, CheryI L. Gilmore, Hannah Jaffe, Carl Harris, Lyndsay Madabhushi, Anant Sci Rep Article To identify computer extracted imaging features for estrogen receptor (ER)-positive breast cancers on dynamic contrast en-hanced (DCE)-MRI that are correlated with the low and high OncotypeDX risk categories. We collected 96 ER-positivebreast lesions with low (<18, N = 55) and high (>30, N = 41) OncotypeDX recurrence scores. Each lesion was quantitatively charac-terize via 6 shape features, 3 pharmacokinetics, 4 enhancement kinetics, 4 intensity kinetics, 148 textural kinetics, 5 dynamic histogram of oriented gradient (DHoG), and 6 dynamic local binary pattern (DLBP) features. The extracted features were evaluated by a linear discriminant analysis (LDA) classifier in terms of their ability to distinguish low and high OncotypeDX risk categories. Classification performance was evaluated by area under the receiver operator characteristic curve (Az). The DHoG and DLBP achieved Az values of 0.84 and 0.80, respectively. The 6 top features identified via feature selection were subsequently combined with the LDA classifier to yield an Az of 0.87. The correlation analysis showed that DHoG (ρ = 0.85, P < 0.001) and DLBP (ρ = 0.83, P < 0.01) were significantly associated with the low and high risk classifications from the OncotypeDX assay. Our results indicated that computer extracted texture features of DCE-MRI were highly correlated with the high and low OncotypeDX risk categories for ER-positive cancers. Nature Publishing Group 2016-02-18 /pmc/articles/PMC4757835/ /pubmed/26887643 http://dx.doi.org/10.1038/srep21394 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wan, Tao
Bloch, B. Nicolas
Plecha, Donna
Thompson, CheryI L.
Gilmore, Hannah
Jaffe, Carl
Harris, Lyndsay
Madabhushi, Anant
A Radio-genomics Approach for Identifying High Risk Estrogen Receptor-positive Breast Cancers on DCE-MRI: Preliminary Results in Predicting OncotypeDX Risk Scores
title A Radio-genomics Approach for Identifying High Risk Estrogen Receptor-positive Breast Cancers on DCE-MRI: Preliminary Results in Predicting OncotypeDX Risk Scores
title_full A Radio-genomics Approach for Identifying High Risk Estrogen Receptor-positive Breast Cancers on DCE-MRI: Preliminary Results in Predicting OncotypeDX Risk Scores
title_fullStr A Radio-genomics Approach for Identifying High Risk Estrogen Receptor-positive Breast Cancers on DCE-MRI: Preliminary Results in Predicting OncotypeDX Risk Scores
title_full_unstemmed A Radio-genomics Approach for Identifying High Risk Estrogen Receptor-positive Breast Cancers on DCE-MRI: Preliminary Results in Predicting OncotypeDX Risk Scores
title_short A Radio-genomics Approach for Identifying High Risk Estrogen Receptor-positive Breast Cancers on DCE-MRI: Preliminary Results in Predicting OncotypeDX Risk Scores
title_sort radio-genomics approach for identifying high risk estrogen receptor-positive breast cancers on dce-mri: preliminary results in predicting oncotypedx risk scores
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757835/
https://www.ncbi.nlm.nih.gov/pubmed/26887643
http://dx.doi.org/10.1038/srep21394
work_keys_str_mv AT wantao aradiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT blochbnicolas aradiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT plechadonna aradiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT thompsoncheryil aradiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT gilmorehannah aradiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT jaffecarl aradiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT harrislyndsay aradiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT madabhushianant aradiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT wantao radiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT blochbnicolas radiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT plechadonna radiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT thompsoncheryil radiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT gilmorehannah radiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT jaffecarl radiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT harrislyndsay radiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores
AT madabhushianant radiogenomicsapproachforidentifyinghighriskestrogenreceptorpositivebreastcancersondcemripreliminaryresultsinpredictingoncotypedxriskscores