Cargando…
Ancestry variation and footprints of natural selection along the genome in Latin American populations
Latin American populations stem from the admixture of Europeans, Africans and Native Americans, which started over 400 years ago and had lasted for several centuries. Extreme deviation over the genome-wide average in ancestry estimations at certain genomic locations could reflect recent natural sele...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757894/ https://www.ncbi.nlm.nih.gov/pubmed/26887503 http://dx.doi.org/10.1038/srep21766 |
Sumario: | Latin American populations stem from the admixture of Europeans, Africans and Native Americans, which started over 400 years ago and had lasted for several centuries. Extreme deviation over the genome-wide average in ancestry estimations at certain genomic locations could reflect recent natural selection. We evaluated the distribution of ancestry estimations using 678 genome-wide microsatellite markers in 249 individuals from 13 admixed populations across Latin America. We found significant deviations in ancestry estimations including three locations with more than 3.5 times standard deviations from the genome-wide average: an excess of European ancestry at 1p36 and 14q32, and an excess of African ancestry at 6p22. Using simulations, we could show that at least the deviation at 6p22 was unlikely to result from genetic drift alone. By applying different linguistic groups as well as the most likely ancestral Native American populations as the ancestry, we showed that the choice of Native American ancestry could affect the local ancestry estimation. However, the signal at 6p22 consistently appeared in most of the analyses using various ancestral groups. This study provided important insights for recent natural selection in the context of the unique history of the New World and implications for disease mapping. |
---|