Cargando…

Fabrication of Triple-parted Stomata-inspired Membrane with Stimulus-responsive Functions

Hydrogels with controllable morphologies and functional movements present a wide range of practical applications. In this work, a triple-parted stomata-inspired membrane (SIM) was fabricated using a UV light cured hydrogel by polymerization-induced diffusion of reactants. A single UV light illuminat...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyejeong, Lee, Sang-Joon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757937/
https://www.ncbi.nlm.nih.gov/pubmed/26887794
http://dx.doi.org/10.1038/srep21258
Descripción
Sumario:Hydrogels with controllable morphologies and functional movements present a wide range of practical applications. In this work, a triple-parted stomata-inspired membrane (SIM) was fabricated using a UV light cured hydrogel by polymerization-induced diffusion of reactants. A single UV light illumination yielded the SIM that has completely-penetrating pores and semi-penetrated parts. Membranes of various shapes can be easily fabricated within a few minutes by changing the photomask design and composition of the pre-gel solution. Similar to stomatal movement, pores in the fabricated SIM open and close their aperture in response to thermal stimuli. The deformability and transparency of the SIM can be easily controlled for a given application. This SIM exhibits stimulus-response, and therefore has numerous practical applications, such as filter membranes with self-adjustable pores, membrane-based sensors, and functional smart membranes.