Cargando…
Classification of low quality cells from single-cell RNA-seq data
Single-cell RNA sequencing (scRNA-seq) has broad applications across biomedical research. One of the key challenges is to ensure that only single, live cells are included in downstream analysis, as the inclusion of compromised cells inevitably affects data interpretation. Here, we present a generic...
Autores principales: | Ilicic, Tomislav, Kim, Jong Kyoung, Kolodziejczyk, Aleksandra A., Bagger, Frederik Otzen, McCarthy, Davis James, Marioni, John C., Teichmann, Sarah A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758103/ https://www.ncbi.nlm.nih.gov/pubmed/26887813 http://dx.doi.org/10.1186/s13059-016-0888-1 |
Ejemplares similares
-
Corrigendum: Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
por: Kim, Jong Kyoung, et al.
Publicado: (2016) -
Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
por: Kim, Jong Kyoung, et al.
Publicado: (2015) -
f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq
por: Buettner, Florian, et al.
Publicado: (2017) -
Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference
por: Huang, Yuanhua, et al.
Publicado: (2019) -
Unveiling mRNP composition by fluorescence correlation and cross-correlation spectroscopy using cell lysates
por: Mateu-Regué, Àngels, et al.
Publicado: (2021)