Cargando…
Hydraulic fracturing water use variability in the United States and potential environmental implications
Until now, up‐to‐date, comprehensive, spatial, national‐scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758395/ https://www.ncbi.nlm.nih.gov/pubmed/26937056 http://dx.doi.org/10.1002/2015WR017278 |
_version_ | 1782416601129156608 |
---|---|
author | Gallegos, Tanya J. Varela, Brian A. Haines, Seth S. Engle, Mark A. |
author_facet | Gallegos, Tanya J. Varela, Brian A. Haines, Seth S. Engle, Mark A. |
author_sort | Gallegos, Tanya J. |
collection | PubMed |
description | Until now, up‐to‐date, comprehensive, spatial, national‐scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m(3) and 19,425 m(3) of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m(3) water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m(3) per well) in watersheds across the United States generally correlated with shale‐gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection‐induced earthquakes. |
format | Online Article Text |
id | pubmed-4758395 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-47583952016-02-29 Hydraulic fracturing water use variability in the United States and potential environmental implications Gallegos, Tanya J. Varela, Brian A. Haines, Seth S. Engle, Mark A. Water Resour Res Technical Reports: Data Until now, up‐to‐date, comprehensive, spatial, national‐scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m(3) and 19,425 m(3) of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m(3) water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m(3) per well) in watersheds across the United States generally correlated with shale‐gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection‐induced earthquakes. John Wiley and Sons Inc. 2015-07-24 2015-07 /pmc/articles/PMC4758395/ /pubmed/26937056 http://dx.doi.org/10.1002/2015WR017278 Text en © 2015. The Authors. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Technical Reports: Data Gallegos, Tanya J. Varela, Brian A. Haines, Seth S. Engle, Mark A. Hydraulic fracturing water use variability in the United States and potential environmental implications |
title | Hydraulic fracturing water use variability in the United States and potential environmental implications |
title_full | Hydraulic fracturing water use variability in the United States and potential environmental implications |
title_fullStr | Hydraulic fracturing water use variability in the United States and potential environmental implications |
title_full_unstemmed | Hydraulic fracturing water use variability in the United States and potential environmental implications |
title_short | Hydraulic fracturing water use variability in the United States and potential environmental implications |
title_sort | hydraulic fracturing water use variability in the united states and potential environmental implications |
topic | Technical Reports: Data |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758395/ https://www.ncbi.nlm.nih.gov/pubmed/26937056 http://dx.doi.org/10.1002/2015WR017278 |
work_keys_str_mv | AT gallegostanyaj hydraulicfracturingwaterusevariabilityintheunitedstatesandpotentialenvironmentalimplications AT varelabriana hydraulicfracturingwaterusevariabilityintheunitedstatesandpotentialenvironmentalimplications AT hainesseths hydraulicfracturingwaterusevariabilityintheunitedstatesandpotentialenvironmentalimplications AT englemarka hydraulicfracturingwaterusevariabilityintheunitedstatesandpotentialenvironmentalimplications |