Cargando…
Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footag...
Autores principales: | Li, Jin, Tran, Maggie, Siwabessy, Justy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758710/ https://www.ncbi.nlm.nih.gov/pubmed/26890307 http://dx.doi.org/10.1371/journal.pone.0149089 |
Ejemplares similares
-
Towards Quantitative Spatial Models of Seabed Sediment Composition
por: Stephens, David, et al.
Publicado: (2015) -
Landscape effects on demersal fish revealed by field observations and predictive seabed modelling
por: Elliott, Sophie A. M., et al.
Publicado: (2017) -
Mobilization of Unexploded Ordnance on the Seabed
por: Menzel, Peter, et al.
Publicado: (2022) -
Species distribution models predict temporal but not spatial variation in forest growth
por: van der Maaten, Ernst, et al.
Publicado: (2017) -
A Random Forest approach to predict the spatial distribution of sediment pollution in an estuarine system
por: Walsh, Eric S., et al.
Publicado: (2017)