Cargando…
Optogenetic stimulation of Drosophila heart rate at different temperatures and Ca(2+) concentrations
Optogenetics is a revolutionary technique that enables noninvasive activation of electrically excitable cells. In mammals, heart rate has traditionally been modulated with pharmacological agents or direct stimulation of cardiac tissue with electrodes. However, implanted wires have been known to caus...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758921/ https://www.ncbi.nlm.nih.gov/pubmed/26834237 http://dx.doi.org/10.14814/phy2.12695 |
Sumario: | Optogenetics is a revolutionary technique that enables noninvasive activation of electrically excitable cells. In mammals, heart rate has traditionally been modulated with pharmacological agents or direct stimulation of cardiac tissue with electrodes. However, implanted wires have been known to cause physical damage and damage from electrical currents. Here, we describe a proof of concept to optically drive cardiac function in a model organism, Drosophila melanogaster. We expressed the light sensitive channelrhodopsin protein ChR2.XXL in larval Drosophila hearts and examined light‐induced activation of cardiac tissue. After demonstrating optical stimulation of larval heart rate, the approach was tested at low temperature and low calcium levels to simulate mammalian heart transplant conditions. Optical activation of ChR2.XXL substantially increased heart rate in all conditions. We have developed a system that can be instrumental in characterizing the physiology of optogenetically controlled cardiac function with an intact heart. |
---|