Cargando…

Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein

Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia-Manyes, Sergi, Giganti, David, Badilla, Carmen L., Lezamiz, Ainhoa, Perales-Calvo, Judit, Beedle, Amy E. M., Fernández, Julio M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759196/
https://www.ncbi.nlm.nih.gov/pubmed/26703476
http://dx.doi.org/10.1074/jbc.M115.673871
_version_ 1782416681008627712
author Garcia-Manyes, Sergi
Giganti, David
Badilla, Carmen L.
Lezamiz, Ainhoa
Perales-Calvo, Judit
Beedle, Amy E. M.
Fernández, Julio M.
author_facet Garcia-Manyes, Sergi
Giganti, David
Badilla, Carmen L.
Lezamiz, Ainhoa
Perales-Calvo, Judit
Beedle, Amy E. M.
Fernández, Julio M.
author_sort Garcia-Manyes, Sergi
collection PubMed
description Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force spectroscopy using atomic force microscopy to study the individual unfolding pathways of the human γD-crystallin, a multidomain protein that must remain correctly folded during the entire lifetime to guarantee lens transparency. When stretching individual polyproteins containing two neighboring HγD-crystallin monomers, we captured an anomalous misfolded conformation in which the β1 and β2 strands of the N terminus domain of two adjacent monomers swap. This experimentally elusive domain-swapped conformation is likely to be responsible for the increase in molecular aggregation that we measure in vitro. Our results demonstrate the power of force spectroscopy at capturing rare misfolded conformations with potential implications for the understanding of the molecular onset of protein aggregation.
format Online
Article
Text
id pubmed-4759196
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-47591962016-02-23 Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein Garcia-Manyes, Sergi Giganti, David Badilla, Carmen L. Lezamiz, Ainhoa Perales-Calvo, Judit Beedle, Amy E. M. Fernández, Julio M. J Biol Chem Molecular Biophysics Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force spectroscopy using atomic force microscopy to study the individual unfolding pathways of the human γD-crystallin, a multidomain protein that must remain correctly folded during the entire lifetime to guarantee lens transparency. When stretching individual polyproteins containing two neighboring HγD-crystallin monomers, we captured an anomalous misfolded conformation in which the β1 and β2 strands of the N terminus domain of two adjacent monomers swap. This experimentally elusive domain-swapped conformation is likely to be responsible for the increase in molecular aggregation that we measure in vitro. Our results demonstrate the power of force spectroscopy at capturing rare misfolded conformations with potential implications for the understanding of the molecular onset of protein aggregation. American Society for Biochemistry and Molecular Biology 2016-02-19 2015-12-24 /pmc/articles/PMC4759196/ /pubmed/26703476 http://dx.doi.org/10.1074/jbc.M115.673871 Text en © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version free via Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) .
spellingShingle Molecular Biophysics
Garcia-Manyes, Sergi
Giganti, David
Badilla, Carmen L.
Lezamiz, Ainhoa
Perales-Calvo, Judit
Beedle, Amy E. M.
Fernández, Julio M.
Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein
title Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein
title_full Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein
title_fullStr Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein
title_full_unstemmed Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein
title_short Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein
title_sort single-molecule force spectroscopy predicts a misfolded, domain-swapped conformation in human γd-crystallin protein
topic Molecular Biophysics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759196/
https://www.ncbi.nlm.nih.gov/pubmed/26703476
http://dx.doi.org/10.1074/jbc.M115.673871
work_keys_str_mv AT garciamanyessergi singlemoleculeforcespectroscopypredictsamisfoldeddomainswappedconformationinhumangdcrystallinprotein
AT gigantidavid singlemoleculeforcespectroscopypredictsamisfoldeddomainswappedconformationinhumangdcrystallinprotein
AT badillacarmenl singlemoleculeforcespectroscopypredictsamisfoldeddomainswappedconformationinhumangdcrystallinprotein
AT lezamizainhoa singlemoleculeforcespectroscopypredictsamisfoldeddomainswappedconformationinhumangdcrystallinprotein
AT peralescalvojudit singlemoleculeforcespectroscopypredictsamisfoldeddomainswappedconformationinhumangdcrystallinprotein
AT beedleamyem singlemoleculeforcespectroscopypredictsamisfoldeddomainswappedconformationinhumangdcrystallinprotein
AT fernandezjuliom singlemoleculeforcespectroscopypredictsamisfoldeddomainswappedconformationinhumangdcrystallinprotein