Cargando…

Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter

c-di-GMP riboswitches are structured RNAs located in the 5′-untranslated regions (5′-UTRs) of mRNAs that regulate expression of downstream genes in response to changing concentrations of the second messenger c-di-GMP. We discovered three complete c-di-GMP riboswitches (Bc3, Bc4 and Bc5 RNA) with sim...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Hang, Zheng, Cao, Su, Jianmei, Chen, Bo, Fu, Yang, Xie, Yuqun, Tang, Qing, Chou, Shan-Ho, He, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759541/
https://www.ncbi.nlm.nih.gov/pubmed/26892868
http://dx.doi.org/10.1038/srep20871
Descripción
Sumario:c-di-GMP riboswitches are structured RNAs located in the 5′-untranslated regions (5′-UTRs) of mRNAs that regulate expression of downstream genes in response to changing concentrations of the second messenger c-di-GMP. We discovered three complete c-di-GMP riboswitches (Bc3, Bc4 and Bc5 RNA) with similar structures, which are arranged in tandem to constitute a triple-tandem (Bc3-5 RNA) riboswitch in the 5′-UTR of the cspABCDE mRNA in Bacillus thuringiensis subsp. chinensis CT-43. Our results showed that this natural triple-tandem riboswitch controlled the expression of the reporter gene more stringently and digitally than the double-tandem or single riboswitch. A sandwich-like dual-fluorescence reporter was further constructed by fusing the Bc3-5 RNA gene between the two fluorescence protein genes amcyan and turborfp. This reporter strain was found to exhibit detectable fluorescence color changes under bright field in response to intracellular c-di-GMP level altered by induced expression of diguanylate cyclase (DGC) PleD. Using this system, two putative membrane-bound DGCs from B. thuringiensis and Xanthomonas oryzae were verified to be functional by replacing pleD with the corresponding DGC genes. This report represented the first native triple-tandem riboswitch that was applied to serve as a riboswitch-based dual-fluorescence reporter for the efficient and convenient verification of putative DGC activity in vivo.