Cargando…
Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors
Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses – the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks,...
Autores principales: | Prezioso, M., Merrikh Bayat, F., Hoskins, B., Likharev, K., Strukov, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759564/ https://www.ncbi.nlm.nih.gov/pubmed/26893175 http://dx.doi.org/10.1038/srep21331 |
Ejemplares similares
-
Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits
por: Prezioso, M., et al.
Publicado: (2018) -
Modeling and Experimental Demonstration of a Hopfield Network Analog-to-Digital Converter with Hybrid CMOS/Memristor Circuits
por: Guo, Xinjie, et al.
Publicado: (2015) -
A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit
por: Chakrabarti, B., et al.
Publicado: (2017) -
Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits
por: Bayat, F. Merrikh, et al.
Publicado: (2018) -
Real-time encoding and compression of neuronal spikes by metal-oxide memristors
por: Gupta, Isha, et al.
Publicado: (2016)