Cargando…

Spectral phase measurement of a Fano resonance using tunable attosecond pulses

Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an...

Descripción completa

Detalles Bibliográficos
Autores principales: Kotur, M., Guénot, D., Jiménez-Galán, Á, Kroon, D., Larsen, E. W., Louisy, M., Bengtsson, S., Miranda, M., Mauritsson, J., Arnold, C. L., Canton, S. E., Gisselbrecht, M., Carette, T., Dahlström, J. M., Lindroth, E., Maquet, A., Argenti, L., Martín, F., L'Huillier, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759632/
https://www.ncbi.nlm.nih.gov/pubmed/26887682
http://dx.doi.org/10.1038/ncomms10566
_version_ 1782416762981056512
author Kotur, M.
Guénot, D.
Jiménez-Galán, Á
Kroon, D.
Larsen, E. W.
Louisy, M.
Bengtsson, S.
Miranda, M.
Mauritsson, J.
Arnold, C. L.
Canton, S. E.
Gisselbrecht, M.
Carette, T.
Dahlström, J. M.
Lindroth, E.
Maquet, A.
Argenti, L.
Martín, F.
L'Huillier, A.
author_facet Kotur, M.
Guénot, D.
Jiménez-Galán, Á
Kroon, D.
Larsen, E. W.
Louisy, M.
Bengtsson, S.
Miranda, M.
Mauritsson, J.
Arnold, C. L.
Canton, S. E.
Gisselbrecht, M.
Carette, T.
Dahlström, J. M.
Lindroth, E.
Maquet, A.
Argenti, L.
Martín, F.
L'Huillier, A.
author_sort Kotur, M.
collection PubMed
description Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time.
format Online
Article
Text
id pubmed-4759632
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-47596322016-03-04 Spectral phase measurement of a Fano resonance using tunable attosecond pulses Kotur, M. Guénot, D. Jiménez-Galán, Á Kroon, D. Larsen, E. W. Louisy, M. Bengtsson, S. Miranda, M. Mauritsson, J. Arnold, C. L. Canton, S. E. Gisselbrecht, M. Carette, T. Dahlström, J. M. Lindroth, E. Maquet, A. Argenti, L. Martín, F. L'Huillier, A. Nat Commun Article Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time. Nature Publishing Group 2016-02-18 /pmc/articles/PMC4759632/ /pubmed/26887682 http://dx.doi.org/10.1038/ncomms10566 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Kotur, M.
Guénot, D.
Jiménez-Galán, Á
Kroon, D.
Larsen, E. W.
Louisy, M.
Bengtsson, S.
Miranda, M.
Mauritsson, J.
Arnold, C. L.
Canton, S. E.
Gisselbrecht, M.
Carette, T.
Dahlström, J. M.
Lindroth, E.
Maquet, A.
Argenti, L.
Martín, F.
L'Huillier, A.
Spectral phase measurement of a Fano resonance using tunable attosecond pulses
title Spectral phase measurement of a Fano resonance using tunable attosecond pulses
title_full Spectral phase measurement of a Fano resonance using tunable attosecond pulses
title_fullStr Spectral phase measurement of a Fano resonance using tunable attosecond pulses
title_full_unstemmed Spectral phase measurement of a Fano resonance using tunable attosecond pulses
title_short Spectral phase measurement of a Fano resonance using tunable attosecond pulses
title_sort spectral phase measurement of a fano resonance using tunable attosecond pulses
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759632/
https://www.ncbi.nlm.nih.gov/pubmed/26887682
http://dx.doi.org/10.1038/ncomms10566
work_keys_str_mv AT koturm spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT guenotd spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT jimenezgalana spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT kroond spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT larsenew spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT louisym spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT bengtssons spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT mirandam spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT mauritssonj spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT arnoldcl spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT cantonse spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT gisselbrechtm spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT carettet spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT dahlstromjm spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT lindrothe spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT maqueta spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT argentil spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT martinf spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses
AT lhuilliera spectralphasemeasurementofafanoresonanceusingtunableattosecondpulses