Cargando…
Risk Prediction Modeling of Sequencing Data Using a Forward Random Field Method
With the advance in high-throughput sequencing technology, it is feasible to investigate the role of common and rare variants in disease risk prediction. While the new technology holds great promise to improve disease prediction, the massive amount of data and low frequency of rare variants pose gre...
Autores principales: | Wen, Yalu, He, Zihuai, Li, Ming, Lu, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759688/ https://www.ncbi.nlm.nih.gov/pubmed/26892725 http://dx.doi.org/10.1038/srep21120 |
Ejemplares similares
-
Risk prediction models for oral clefts allowing for phenotypic heterogeneity
por: Wen, Yalu, et al.
Publicado: (2015) -
Explainable deep transfer learning model for disease risk prediction using high-dimensional genomic data
por: Liu, Long, et al.
Publicado: (2022) -
A penalized linear mixed model with generalized method of moments for prediction analysis on high-dimensional multi-omics data
por: Wang, Xiaqiong, et al.
Publicado: (2022) -
Bayesian linear mixed model with multiple random effects for prediction analysis on high-dimensional multi-omics data
por: Hai, Yang, et al.
Publicado: (2023) -
A genome-wide scan statistic framework for whole-genome sequence data analysis
por: He, Zihuai, et al.
Publicado: (2019)