Cargando…

Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex

BACKGROUND: Tamoxifen is currently used for the treatment of both early and advanced estrogen receptor (ER) positive breast cancer in pre- and post-menopausal women. However, using tamoxifen routinely to inhibit endogenous or exogenous estrogen effects is occasionally difficult because of its potent...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yu-Ling, Chen, Chia-Hung, Wu, Hsin-Yi, Tsai, Nu-Man, Jian, Ting-Yan, Chang, Yuan-Ching, Lin, Chi-Hsin, Wu, Chih-Hsiung, Hsu, Fei-Ting, Leung, Ting Kai, Liao, Kuang-Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759757/
https://www.ncbi.nlm.nih.gov/pubmed/26892504
http://dx.doi.org/10.1186/s12951-016-0163-3
Descripción
Sumario:BACKGROUND: Tamoxifen is currently used for the treatment of both early and advanced estrogen receptor (ER) positive breast cancer in pre- and post-menopausal women. However, using tamoxifen routinely to inhibit endogenous or exogenous estrogen effects is occasionally difficult because of its potential side effects. OBJECTIVES: The aim of this study is to design a local drug delivery system to encapsulate tamoxifen for observing their efficacy of skin penetration, drug accumulation and cancer therapy. METHODS: A cationic liposome-PEG-PEI complex (LPPC) was used as a carrier for the encapsulation of tamoxifen and forming ‘LPPC/TAM’ for transdermal release. The cytotoxicity of LPPC/TAM was analyzed by MTT. The skin penetration, tumor growth inhibition and organ damages were measured in xenograft mice following transdermal treatment. RESULTS: LPPC/TAM had an average size less than 270 nm and a zeta-potential of approximately 40 mV. LPPC/TAM displayed dramatically increased the cytotoxic activity in all breast cancer cells, especially in ER-positive breast cancer cells. In vivo, LPPC drug delivery helped the fluorescent dye penetrating across the skim and accumulating rapidly in tumor area. Administration of LPPC/TAM by transdermal route inhibited about 86 % of tumor growth in mice bearing BT474 tumors. This local treatment of LPPC/TAM did not injury skin and any organs. CONCLUSION: LPPC-delivery system provided a better skin penetration and drug accumulation and therapeutic efficacy. Therefore, LPPC/TAM drug delivery maybe a useful transdermal tool of drugs utilization for breast cancer therapy.