Cargando…
Association of H-FABP gene polymorphisms with intramuscular fat content in Three-yellow chickens and Hetian-black chickens
BACKGROUND: To explore the relationship between the heart-type fatty acid binding protein (H-FABP) gene and intramuscular fat (IMF), a polymorphism of the second exon of the H-FABP gene was investigated in 60 Three-yellow chickens (TYCs) and 60 Hetian-black chickens (HTBCs). RESULTS: The IMF content...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759766/ https://www.ncbi.nlm.nih.gov/pubmed/26900465 http://dx.doi.org/10.1186/s40104-016-0067-y |
Sumario: | BACKGROUND: To explore the relationship between the heart-type fatty acid binding protein (H-FABP) gene and intramuscular fat (IMF), a polymorphism of the second exon of the H-FABP gene was investigated in 60 Three-yellow chickens (TYCs) and 60 Hetian-black chickens (HTBCs). RESULTS: The IMF contents of the cardiac, chest and leg muscles in HTBC were increased compared with TYC. Both TYC and HTBC populations exhibited Hardy-Weinberg Equilibrium (HWE) according to the χ(2) test. Three variations of the two birds were detected, namely, G939A, G982A and C1014T. HTBCs with the TT genotypes exhibit increased IMF content in the chest muscles compared with the TC genotype. Thus, the G982A site could be considered a genetic marker for selecting increased IMF content in the chest muscles of HTBC. The correlation coefficients revealed that H-FABP mRNA expression was negatively correlated with the IMF content in the cardiac, chest and leg muscles of HTBC and in the cardiac and chest muscles of TYC. The relative mRNA expression of H-FABP was reduced in the cardiac and leg muscles of HTBC compared with TYC, but this difference was not observed at the protein level, as assessed by Western blot analysis. CONCLUSIONS: These findings offer essential data that can be useful in the breeding program of HTBC and future research exploring the role of H-FABP in IMF deposition and regulation in chickens. |
---|