Cargando…

The Drug Derived Complexity Index (DDCI) Predicts Mortality, Unplanned Hospitalization and Hospital Readmissions at the Population Level

OBJECTIVE: to develop and validate the Drug Derived Complexity Index (DDCI), a predictive model derived from drug prescriptions able to stratify the general population according to the risk of death, unplanned hospital admission, and readmission, and to compare the new predictive index with the Char...

Descripción completa

Detalles Bibliográficos
Autores principales: Robusto, Fabio, Lepore, Vito, D'Ettorre, Antonio, Lucisano, Giuseppe, De Berardis, Giorgia, Bisceglia, Lucia, Tognoni, Gianni, Nicolucci, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4760682/
https://www.ncbi.nlm.nih.gov/pubmed/26895073
http://dx.doi.org/10.1371/journal.pone.0149203
Descripción
Sumario:OBJECTIVE: to develop and validate the Drug Derived Complexity Index (DDCI), a predictive model derived from drug prescriptions able to stratify the general population according to the risk of death, unplanned hospital admission, and readmission, and to compare the new predictive index with the Charlson Comorbidity Index (CCI). DESIGN: Population-based cohort study, using a record-linkage analysis of prescription databases, hospital discharge records, and the civil registry. The predictive model was developed based on prescription patterns indicative of chronic diseases, using a random sample of 50% of the population. Multivariate Cox proportional hazards regression was used to assess weights of different prescription patterns and drug classes. The predictive properties of the DDCI were confirmed in the validation cohort, represented by the other half of the population. The performance of DDCI was compared to the CCI in terms of calibration, discrimination and reclassification. SETTING: 6 local health authorities with 2.0 million citizens aged 40 years or above. RESULTS: One year and overall mortality rates, unplanned hospitalization rates and hospital readmission rates progressively increased with increasing DDCI score. In the overall population, the model including age, gender and DDCI showed a high performance. DDCI predicted 1-year mortality, overall mortality and unplanned hospitalization with an accuracy of 0.851, 0.835, and 0.584, respectively. If compared to CCI, DDCI showed discrimination and reclassification properties very similar to the CCI, and improved prediction when used in combination with the CCI. CONCLUSIONS AND RELEVANCE: DDCI is a reliable prognostic index, able to stratify the entire population into homogeneous risk groups. DDCI can represent an useful tool for risk-adjustment, policy planning, and the identification of patients needing a focused approach in everyday practice.