Cargando…

Anthocyanin accumulation enhanced in Lc-transgenic cotton under light and increased resistance to bollworm

Breeding of naturally colored cotton fiber has been hampered by the limited germplasm, an alternative way is to use transgenic approach to create more germplasm for breeding. Here, we report our effort to engineer anthocyanin production in cotton. The maize Lc gene, under the control of the constitu...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Xiaoping, Fan, Bohong, Wang, Yuxiang, Yang, Weicai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Japan 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761005/
https://www.ncbi.nlm.nih.gov/pubmed/26941851
http://dx.doi.org/10.1007/s11816-015-0382-3
Descripción
Sumario:Breeding of naturally colored cotton fiber has been hampered by the limited germplasm, an alternative way is to use transgenic approach to create more germplasm for breeding. Here, we report our effort to engineer anthocyanin production in cotton. The maize Lc gene, under the control of the constitutive 35S promoter, was introduced into cotton through genetic transformation. Our data showed that the expression of the Lc gene alone is sufficient to trigger the accumulation of anthocyanin in a variety of cell types including fiber cells in cotton. However, the accumulation of colored anthocyanin in cotton fibers requires the participation of light signaling. These data indicate that it is feasible to engineer colored fibers through transgenic approach in cotton. Furthermore, we showed that the Lc-transgenic cotton plants are resistant to cotton bollworm. These transgenic plants are, therefore, potentially useful for cotton breeding against cotton bollworm.