Cargando…

Integration of omics: more than the sum of its parts

Genome scale data on biological systems has increasingly become available by sequencing of DNA and RNA, and by mass spectrometric quantification of proteins and metabolites. The cellular components from which these -omics regimes are derived act as one integrated system in vivo; thus, there is a nat...

Descripción completa

Detalles Bibliográficos
Autores principales: Buescher, Joerg Martin, Driggers, Edward M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761192/
https://www.ncbi.nlm.nih.gov/pubmed/26900468
http://dx.doi.org/10.1186/s40170-016-0143-y
Descripción
Sumario:Genome scale data on biological systems has increasingly become available by sequencing of DNA and RNA, and by mass spectrometric quantification of proteins and metabolites. The cellular components from which these -omics regimes are derived act as one integrated system in vivo; thus, there is a natural instinct to integrate -omics data types. Statistical analyses, the use of previous knowledge in the form of networks, and the use of time-resolved measurements are three key design elements for life scientists to consider in planning integrated -omics studies. These design elements are reviewed in the context of multiple recent systems biology studies that leverage data from different types of -omics analyses. While most of these studies rely on well-established model organisms, the concepts for integrating -omics data that were developed in these studies can help to enable systems research in the field of cancer biology.