Cargando…
Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis
Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atroph...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761718/ https://www.ncbi.nlm.nih.gov/pubmed/26826670 |
_version_ | 1782417004333891584 |
---|---|
author | Baehr, Leslie M. West, Daniel W.D. Marcotte, George Marshall, Andrea G. De Sousa, Luis Gustavo Baar, Keith Bodine, Sue C. |
author_facet | Baehr, Leslie M. West, Daniel W.D. Marcotte, George Marshall, Andrea G. De Sousa, Luis Gustavo Baar, Keith Bodine, Sue C. |
author_sort | Baehr, Leslie M. |
collection | PubMed |
description | Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength. |
format | Online Article Text |
id | pubmed-4761718 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-47617182016-03-11 Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis Baehr, Leslie M. West, Daniel W.D. Marcotte, George Marshall, Andrea G. De Sousa, Luis Gustavo Baar, Keith Bodine, Sue C. Aging (Albany NY) Research Paper Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength. Impact Journals LLC 2016-01-29 /pmc/articles/PMC4761718/ /pubmed/26826670 Text en Copyright: © 2016 Baehr et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Baehr, Leslie M. West, Daniel W.D. Marcotte, George Marshall, Andrea G. De Sousa, Luis Gustavo Baar, Keith Bodine, Sue C. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis |
title | Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis |
title_full | Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis |
title_fullStr | Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis |
title_full_unstemmed | Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis |
title_short | Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis |
title_sort | age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and er stress, not impaired protein synthesis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761718/ https://www.ncbi.nlm.nih.gov/pubmed/26826670 |
work_keys_str_mv | AT baehrlesliem agerelateddeficitsinskeletalmusclerecoveryfollowingdisuseareassociatedwithneuromuscularjunctioninstabilityanderstressnotimpairedproteinsynthesis AT westdanielwd agerelateddeficitsinskeletalmusclerecoveryfollowingdisuseareassociatedwithneuromuscularjunctioninstabilityanderstressnotimpairedproteinsynthesis AT marcottegeorge agerelateddeficitsinskeletalmusclerecoveryfollowingdisuseareassociatedwithneuromuscularjunctioninstabilityanderstressnotimpairedproteinsynthesis AT marshallandreag agerelateddeficitsinskeletalmusclerecoveryfollowingdisuseareassociatedwithneuromuscularjunctioninstabilityanderstressnotimpairedproteinsynthesis AT desousaluisgustavo agerelateddeficitsinskeletalmusclerecoveryfollowingdisuseareassociatedwithneuromuscularjunctioninstabilityanderstressnotimpairedproteinsynthesis AT baarkeith agerelateddeficitsinskeletalmusclerecoveryfollowingdisuseareassociatedwithneuromuscularjunctioninstabilityanderstressnotimpairedproteinsynthesis AT bodinesuec agerelateddeficitsinskeletalmusclerecoveryfollowingdisuseareassociatedwithneuromuscularjunctioninstabilityanderstressnotimpairedproteinsynthesis |