Cargando…
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifu...
Autor principal: | Goto, Hayato |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761947/ https://www.ncbi.nlm.nih.gov/pubmed/26899997 http://dx.doi.org/10.1038/srep21686 |
Ejemplares similares
-
Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems
por: Goto, Hayato, et al.
Publicado: (2019) -
Adiabatic Quantum Computation Applied to Deep Learning Networks
por: Liu, Jeremy, et al.
Publicado: (2018) -
Training Neural Networks with Universal Adiabatic Quantum Computing
por: Abel, Steve, et al.
Publicado: (2023) -
Boltzmann sampling from the Ising model using quantum heating of coupled nonlinear oscillators
por: Goto, Hayato, et al.
Publicado: (2018) -
Nonlinear oscillations, dynamical systems, and bifurcations of vector fields
por: Guckenheimer, John, et al.
Publicado: (1983)