Cargando…
A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism
The Mediator complex governs gene expression by linking upstream signaling pathways with the basal transcriptional machinery. However, how individual Mediator subunits may function in different tissues remains to be investigated. Through skeletal muscle-specific deletion of the Mediator subunit MED1...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762428/ https://www.ncbi.nlm.nih.gov/pubmed/26883362 http://dx.doi.org/10.1101/gad.273128.115 |
_version_ | 1782417110308225024 |
---|---|
author | Amoasii, Leonela Holland, William Sanchez-Ortiz, Efrain Baskin, Kedryn K. Pearson, Mackenzie Burgess, Shawn C. Nelson, Benjamin R. Bassel-Duby, Rhonda Olson, Eric N. |
author_facet | Amoasii, Leonela Holland, William Sanchez-Ortiz, Efrain Baskin, Kedryn K. Pearson, Mackenzie Burgess, Shawn C. Nelson, Benjamin R. Bassel-Duby, Rhonda Olson, Eric N. |
author_sort | Amoasii, Leonela |
collection | PubMed |
description | The Mediator complex governs gene expression by linking upstream signaling pathways with the basal transcriptional machinery. However, how individual Mediator subunits may function in different tissues remains to be investigated. Through skeletal muscle-specific deletion of the Mediator subunit MED13 in mice, we discovered a gene regulatory mechanism by which skeletal muscle modulates the response of the liver to a high-fat diet. Skeletal muscle-specific deletion of MED13 in mice conferred resistance to hepatic steatosis by activating a metabolic gene program that enhances muscle glucose uptake and storage as glycogen. The consequent insulin-sensitizing effect within skeletal muscle lowered systemic glucose and insulin levels independently of weight gain and adiposity and prevented hepatic lipid accumulation. MED13 suppressed the expression of genes involved in glucose uptake and metabolism in skeletal muscle by inhibiting the nuclear receptor NURR1 and the MEF2 transcription factor. These findings reveal a fundamental molecular mechanism for the governance of glucose metabolism and the control of hepatic lipid accumulation by skeletal muscle. Intriguingly, MED13 exerts opposing metabolic actions in skeletal muscle and the heart, highlighting the customized, tissue-specific functions of the Mediator complex. |
format | Online Article Text |
id | pubmed-4762428 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-47624282016-08-15 A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism Amoasii, Leonela Holland, William Sanchez-Ortiz, Efrain Baskin, Kedryn K. Pearson, Mackenzie Burgess, Shawn C. Nelson, Benjamin R. Bassel-Duby, Rhonda Olson, Eric N. Genes Dev Research Paper The Mediator complex governs gene expression by linking upstream signaling pathways with the basal transcriptional machinery. However, how individual Mediator subunits may function in different tissues remains to be investigated. Through skeletal muscle-specific deletion of the Mediator subunit MED13 in mice, we discovered a gene regulatory mechanism by which skeletal muscle modulates the response of the liver to a high-fat diet. Skeletal muscle-specific deletion of MED13 in mice conferred resistance to hepatic steatosis by activating a metabolic gene program that enhances muscle glucose uptake and storage as glycogen. The consequent insulin-sensitizing effect within skeletal muscle lowered systemic glucose and insulin levels independently of weight gain and adiposity and prevented hepatic lipid accumulation. MED13 suppressed the expression of genes involved in glucose uptake and metabolism in skeletal muscle by inhibiting the nuclear receptor NURR1 and the MEF2 transcription factor. These findings reveal a fundamental molecular mechanism for the governance of glucose metabolism and the control of hepatic lipid accumulation by skeletal muscle. Intriguingly, MED13 exerts opposing metabolic actions in skeletal muscle and the heart, highlighting the customized, tissue-specific functions of the Mediator complex. Cold Spring Harbor Laboratory Press 2016-02-15 /pmc/articles/PMC4762428/ /pubmed/26883362 http://dx.doi.org/10.1101/gad.273128.115 Text en © 2016 Amoasii et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Research Paper Amoasii, Leonela Holland, William Sanchez-Ortiz, Efrain Baskin, Kedryn K. Pearson, Mackenzie Burgess, Shawn C. Nelson, Benjamin R. Bassel-Duby, Rhonda Olson, Eric N. A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism |
title | A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism |
title_full | A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism |
title_fullStr | A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism |
title_full_unstemmed | A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism |
title_short | A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism |
title_sort | med13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762428/ https://www.ncbi.nlm.nih.gov/pubmed/26883362 http://dx.doi.org/10.1101/gad.273128.115 |
work_keys_str_mv | AT amoasiileonela amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT hollandwilliam amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT sanchezortizefrain amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT baskinkedrynk amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT pearsonmackenzie amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT burgessshawnc amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT nelsonbenjaminr amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT basseldubyrhonda amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT olsonericn amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT amoasiileonela med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT hollandwilliam med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT sanchezortizefrain med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT baskinkedrynk med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT pearsonmackenzie med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT burgessshawnc med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT nelsonbenjaminr med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT basseldubyrhonda med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism AT olsonericn med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism |