Cargando…

A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism

The Mediator complex governs gene expression by linking upstream signaling pathways with the basal transcriptional machinery. However, how individual Mediator subunits may function in different tissues remains to be investigated. Through skeletal muscle-specific deletion of the Mediator subunit MED1...

Descripción completa

Detalles Bibliográficos
Autores principales: Amoasii, Leonela, Holland, William, Sanchez-Ortiz, Efrain, Baskin, Kedryn K., Pearson, Mackenzie, Burgess, Shawn C., Nelson, Benjamin R., Bassel-Duby, Rhonda, Olson, Eric N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762428/
https://www.ncbi.nlm.nih.gov/pubmed/26883362
http://dx.doi.org/10.1101/gad.273128.115
_version_ 1782417110308225024
author Amoasii, Leonela
Holland, William
Sanchez-Ortiz, Efrain
Baskin, Kedryn K.
Pearson, Mackenzie
Burgess, Shawn C.
Nelson, Benjamin R.
Bassel-Duby, Rhonda
Olson, Eric N.
author_facet Amoasii, Leonela
Holland, William
Sanchez-Ortiz, Efrain
Baskin, Kedryn K.
Pearson, Mackenzie
Burgess, Shawn C.
Nelson, Benjamin R.
Bassel-Duby, Rhonda
Olson, Eric N.
author_sort Amoasii, Leonela
collection PubMed
description The Mediator complex governs gene expression by linking upstream signaling pathways with the basal transcriptional machinery. However, how individual Mediator subunits may function in different tissues remains to be investigated. Through skeletal muscle-specific deletion of the Mediator subunit MED13 in mice, we discovered a gene regulatory mechanism by which skeletal muscle modulates the response of the liver to a high-fat diet. Skeletal muscle-specific deletion of MED13 in mice conferred resistance to hepatic steatosis by activating a metabolic gene program that enhances muscle glucose uptake and storage as glycogen. The consequent insulin-sensitizing effect within skeletal muscle lowered systemic glucose and insulin levels independently of weight gain and adiposity and prevented hepatic lipid accumulation. MED13 suppressed the expression of genes involved in glucose uptake and metabolism in skeletal muscle by inhibiting the nuclear receptor NURR1 and the MEF2 transcription factor. These findings reveal a fundamental molecular mechanism for the governance of glucose metabolism and the control of hepatic lipid accumulation by skeletal muscle. Intriguingly, MED13 exerts opposing metabolic actions in skeletal muscle and the heart, highlighting the customized, tissue-specific functions of the Mediator complex.
format Online
Article
Text
id pubmed-4762428
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-47624282016-08-15 A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism Amoasii, Leonela Holland, William Sanchez-Ortiz, Efrain Baskin, Kedryn K. Pearson, Mackenzie Burgess, Shawn C. Nelson, Benjamin R. Bassel-Duby, Rhonda Olson, Eric N. Genes Dev Research Paper The Mediator complex governs gene expression by linking upstream signaling pathways with the basal transcriptional machinery. However, how individual Mediator subunits may function in different tissues remains to be investigated. Through skeletal muscle-specific deletion of the Mediator subunit MED13 in mice, we discovered a gene regulatory mechanism by which skeletal muscle modulates the response of the liver to a high-fat diet. Skeletal muscle-specific deletion of MED13 in mice conferred resistance to hepatic steatosis by activating a metabolic gene program that enhances muscle glucose uptake and storage as glycogen. The consequent insulin-sensitizing effect within skeletal muscle lowered systemic glucose and insulin levels independently of weight gain and adiposity and prevented hepatic lipid accumulation. MED13 suppressed the expression of genes involved in glucose uptake and metabolism in skeletal muscle by inhibiting the nuclear receptor NURR1 and the MEF2 transcription factor. These findings reveal a fundamental molecular mechanism for the governance of glucose metabolism and the control of hepatic lipid accumulation by skeletal muscle. Intriguingly, MED13 exerts opposing metabolic actions in skeletal muscle and the heart, highlighting the customized, tissue-specific functions of the Mediator complex. Cold Spring Harbor Laboratory Press 2016-02-15 /pmc/articles/PMC4762428/ /pubmed/26883362 http://dx.doi.org/10.1101/gad.273128.115 Text en © 2016 Amoasii et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
spellingShingle Research Paper
Amoasii, Leonela
Holland, William
Sanchez-Ortiz, Efrain
Baskin, Kedryn K.
Pearson, Mackenzie
Burgess, Shawn C.
Nelson, Benjamin R.
Bassel-Duby, Rhonda
Olson, Eric N.
A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism
title A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism
title_full A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism
title_fullStr A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism
title_full_unstemmed A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism
title_short A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism
title_sort med13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762428/
https://www.ncbi.nlm.nih.gov/pubmed/26883362
http://dx.doi.org/10.1101/gad.273128.115
work_keys_str_mv AT amoasiileonela amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT hollandwilliam amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT sanchezortizefrain amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT baskinkedrynk amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT pearsonmackenzie amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT burgessshawnc amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT nelsonbenjaminr amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT basseldubyrhonda amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT olsonericn amed13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT amoasiileonela med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT hollandwilliam med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT sanchezortizefrain med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT baskinkedrynk med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT pearsonmackenzie med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT burgessshawnc med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT nelsonbenjaminr med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT basseldubyrhonda med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism
AT olsonericn med13dependentskeletalmusclegeneprogramcontrolssystemicglucosehomeostasisandhepaticmetabolism