Cargando…
Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3)
Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1−x)Mn(x))(2)Se(3) is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762886/ https://www.ncbi.nlm.nih.gov/pubmed/26892831 http://dx.doi.org/10.1038/ncomms10559 |
_version_ | 1782417157074714624 |
---|---|
author | Sánchez-Barriga, J. Varykhalov, A. Springholz, G. Steiner, H. Kirchschlager, R. Bauer, G. Caha, O. Schierle, E. Weschke, E. Ünal, A. A. Valencia, S. Dunst, M. Braun, J. Ebert, H. Minár, J. Golias, E. Yashina, L. V. Ney, A. Holý, V. Rader, O. |
author_facet | Sánchez-Barriga, J. Varykhalov, A. Springholz, G. Steiner, H. Kirchschlager, R. Bauer, G. Caha, O. Schierle, E. Weschke, E. Ünal, A. A. Valencia, S. Dunst, M. Braun, J. Ebert, H. Minár, J. Golias, E. Yashina, L. V. Ney, A. Holý, V. Rader, O. |
author_sort | Sánchez-Barriga, J. |
collection | PubMed |
description | Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1−x)Mn(x))(2)Se(3) is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection. |
format | Online Article Text |
id | pubmed-4762886 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-47628862016-03-04 Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3) Sánchez-Barriga, J. Varykhalov, A. Springholz, G. Steiner, H. Kirchschlager, R. Bauer, G. Caha, O. Schierle, E. Weschke, E. Ünal, A. A. Valencia, S. Dunst, M. Braun, J. Ebert, H. Minár, J. Golias, E. Yashina, L. V. Ney, A. Holý, V. Rader, O. Nat Commun Article Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1−x)Mn(x))(2)Se(3) is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection. Nature Publishing Group 2016-02-19 /pmc/articles/PMC4762886/ /pubmed/26892831 http://dx.doi.org/10.1038/ncomms10559 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Sánchez-Barriga, J. Varykhalov, A. Springholz, G. Steiner, H. Kirchschlager, R. Bauer, G. Caha, O. Schierle, E. Weschke, E. Ünal, A. A. Valencia, S. Dunst, M. Braun, J. Ebert, H. Minár, J. Golias, E. Yashina, L. V. Ney, A. Holý, V. Rader, O. Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3) |
title | Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3) |
title_full | Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3) |
title_fullStr | Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3) |
title_full_unstemmed | Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3) |
title_short | Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3) |
title_sort | nonmagnetic band gap at the dirac point of the magnetic topological insulator (bi(1−x)mn(x))(2)se(3) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762886/ https://www.ncbi.nlm.nih.gov/pubmed/26892831 http://dx.doi.org/10.1038/ncomms10559 |
work_keys_str_mv | AT sanchezbarrigaj nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT varykhalova nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT springholzg nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT steinerh nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT kirchschlagerr nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT bauerg nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT cahao nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT schierlee nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT weschkee nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT unalaa nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT valencias nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT dunstm nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT braunj nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT eberth nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT minarj nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT goliase nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT yashinalv nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT neya nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT holyv nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 AT radero nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3 |