Cargando…

Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3)

Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1−x)Mn(x))(2)Se(3) is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Sánchez-Barriga, J., Varykhalov, A., Springholz, G., Steiner, H., Kirchschlager, R., Bauer, G., Caha, O., Schierle, E., Weschke, E., Ünal, A. A., Valencia, S., Dunst, M., Braun, J., Ebert, H., Minár, J., Golias, E., Yashina, L. V., Ney, A., Holý, V., Rader, O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762886/
https://www.ncbi.nlm.nih.gov/pubmed/26892831
http://dx.doi.org/10.1038/ncomms10559
_version_ 1782417157074714624
author Sánchez-Barriga, J.
Varykhalov, A.
Springholz, G.
Steiner, H.
Kirchschlager, R.
Bauer, G.
Caha, O.
Schierle, E.
Weschke, E.
Ünal, A. A.
Valencia, S.
Dunst, M.
Braun, J.
Ebert, H.
Minár, J.
Golias, E.
Yashina, L. V.
Ney, A.
Holý, V.
Rader, O.
author_facet Sánchez-Barriga, J.
Varykhalov, A.
Springholz, G.
Steiner, H.
Kirchschlager, R.
Bauer, G.
Caha, O.
Schierle, E.
Weschke, E.
Ünal, A. A.
Valencia, S.
Dunst, M.
Braun, J.
Ebert, H.
Minár, J.
Golias, E.
Yashina, L. V.
Ney, A.
Holý, V.
Rader, O.
author_sort Sánchez-Barriga, J.
collection PubMed
description Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1−x)Mn(x))(2)Se(3) is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection.
format Online
Article
Text
id pubmed-4762886
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-47628862016-03-04 Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3) Sánchez-Barriga, J. Varykhalov, A. Springholz, G. Steiner, H. Kirchschlager, R. Bauer, G. Caha, O. Schierle, E. Weschke, E. Ünal, A. A. Valencia, S. Dunst, M. Braun, J. Ebert, H. Minár, J. Golias, E. Yashina, L. V. Ney, A. Holý, V. Rader, O. Nat Commun Article Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1−x)Mn(x))(2)Se(3) is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection. Nature Publishing Group 2016-02-19 /pmc/articles/PMC4762886/ /pubmed/26892831 http://dx.doi.org/10.1038/ncomms10559 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Sánchez-Barriga, J.
Varykhalov, A.
Springholz, G.
Steiner, H.
Kirchschlager, R.
Bauer, G.
Caha, O.
Schierle, E.
Weschke, E.
Ünal, A. A.
Valencia, S.
Dunst, M.
Braun, J.
Ebert, H.
Minár, J.
Golias, E.
Yashina, L. V.
Ney, A.
Holý, V.
Rader, O.
Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3)
title Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3)
title_full Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3)
title_fullStr Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3)
title_full_unstemmed Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3)
title_short Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1−x)Mn(x))(2)Se(3)
title_sort nonmagnetic band gap at the dirac point of the magnetic topological insulator (bi(1−x)mn(x))(2)se(3)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762886/
https://www.ncbi.nlm.nih.gov/pubmed/26892831
http://dx.doi.org/10.1038/ncomms10559
work_keys_str_mv AT sanchezbarrigaj nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT varykhalova nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT springholzg nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT steinerh nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT kirchschlagerr nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT bauerg nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT cahao nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT schierlee nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT weschkee nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT unalaa nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT valencias nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT dunstm nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT braunj nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT eberth nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT minarj nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT goliase nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT yashinalv nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT neya nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT holyv nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3
AT radero nonmagneticbandgapatthediracpointofthemagnetictopologicalinsulatorbi1xmnx2se3