Cargando…

Contiguous 2,2,4-triamino-5(2H)-oxazolone obstructs DNA synthesis by DNA polymerases α, β, η, ι, κ, REV1 and Klenow Fragment exo(−), but not by DNA polymerase ζ

Guanine is the most easily oxidized of the four DNA bases, and contiguous guanines (GG) in a sequence are more readily oxidized than a single guanine in a sequence. Continued oxidation of GGs results in a contiguous oxidized guanine lesion. Two contiguous 2,5-diamino-4H-imidazol-4-ones, an oxidized...

Descripción completa

Detalles Bibliográficos
Autores principales: Suzuki, Masayo, Kino, Katsuhito, Kawada, Taishu, Oyoshi, Takanori, Morikawa, Masayuki, Kobayashi, Takanobu, Miyazawa, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763079/
https://www.ncbi.nlm.nih.gov/pubmed/26491064
http://dx.doi.org/10.1093/jb/mvv103
Descripción
Sumario:Guanine is the most easily oxidized of the four DNA bases, and contiguous guanines (GG) in a sequence are more readily oxidized than a single guanine in a sequence. Continued oxidation of GGs results in a contiguous oxidized guanine lesion. Two contiguous 2,5-diamino-4H-imidazol-4-ones, an oxidized form of guanine that hydrolyses to 2,2,4-triamino-5(2H)-oxazolone (Oz), are detected following the oxidation of GG. In this study, we analysed translesion synthesis (TLS) across two contiguous Oz molecules (OzOz) using Klenow Fragment exo(−) (KF exo(−)) and DNA polymerases (Pols) α, β, ζ, η, ι, κ and REV1. We found that KF exo(−) and Pols α, β, ι and REV1 inserted one nucleotide opposite the 3′ Oz of OzOz and stalled at the subsequent extension, and that Pol κ incorporated no nucleotide. Pol η only inefficiently elongated the primer up to full-length across OzOz; the synthesis of most DNA strands stalled at the 3′ or 5′ Oz of OzOz. Surprisingly, however, Pol ζ efficiently extended the primer up to full-length across OzOz, unlike the other DNA polymerases, but catalysed error-prone nucleotide incorporation. We therefore believe that Pol ζ is required for efficient TLS of OzOz. These results show that OzOz obstructs DNA synthesis by DNA polymerases except Pol ζ.